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lates XYZ in another language. (Here XYZ stands for a specific section name mentioned
below, such as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”His-
tory”.) To ”Preserve the Title” of such a section when you modify the Document
means that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may
not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
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If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly,
all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified Version
under precisely this License, with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.
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D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled ”History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document, you
may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
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You may add a section Entitled ”Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties–for example, statements
of peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement of any
Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work
in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of
the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise combine
any sections Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”.
You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding verbatim
copying of that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution medium,
is called an ”aggregate” if the copyright resulting from the compilation is not used to
limit the legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”,
or ”History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify, sublicense
or distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or any later
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version” applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number
of this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just after
the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software license,
such as the GNU General Public License, to permit their use in free software.



CONTRIBUTOR LIST

How to contribute to this book

As a copylefted work, this book is open to revisions and expansions by any interested
parties. The only ”catch” is that credit must be given where credit is due. This is a
copyrighted work: it is not in the public domain!

If you wish to cite portions of this book in a work of your own, you must
follow the same guidelines as for any other GDL copyrighted work.

Credits

All entries have been arranged in alphabetical order of surname (hopefully. Major
contributions are listed by individual name with some detail on the nature of the con-
tribution(s), date, contact info, etc. Minor contributions (typo corrections, etc.) are
listed by name only for reasons of brevity. Please understand that when I classify a
contribution as ”minor,” it is in no way inferior to the effort or value of a ”major”
contribution, just smaller in the sense of less text changed. Any and all contributions
are gratefully accepted. I am indebted to all those who have given freely of their own
knowledge, time, and resources to make this a better book!

� Date(s) of contribution(s): 1999 to present

� Nature of contribution: Original author.

� Contact at: barmeir at gmail.com

Steven from artofproblemsolving.com

� Date(s) of contribution(s): June 2005, Dec, 2009
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� Nature of contribution: LaTeX formatting, help on building the useful equation
and important equation macros.

� Nature of contribution: In 2009 creating the exEq macro to have different
counter for example.

Dan H. Olson

� Date(s) of contribution(s): April 2008

� Nature of contribution: Some discussions about chapter on mechanics and
correction of English.

Richard Hackbarth

� Date(s) of contribution(s): April 2008

� Nature of contribution: Some discussions about chapter on mechanics and
correction of English.

John Herbolenes

� Date(s) of contribution(s): August 2009

� Nature of contribution: Provide some example for the static chapter.

Eliezer Bar-Meir

� Date(s) of contribution(s): Nov 2009, Dec 2009

� Nature of contribution: Correct many English mistakes Mass.

� Nature of contribution: Correct many English mistakes Momentum.

Henry Schoumertate

� Date(s) of contribution(s): Nov 2009

� Nature of contribution: Discussion on the mathematics of Reynolds Transforms.

Your name here

� Date(s) of contribution(s): Month and year of contribution

� Nature of contribution: Insert text here, describing how you contributed to the
book.

� Contact at: my email@provider.net
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Typo corrections and other ”minor” contributions

� R. Gupta, January 2008, help with the original img macro and other ( LaTeX
issues).

� Tousher Yang April 2008, review of statics and thermo chapters.

� Corretion to equation (2.38) by Michal Zadrozny. (Nov 2010) Corretion to word-
ing in viscosity density Prashant Balan. (Nov 2010)
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About This Author

Genick Bar-Meir holds a Ph.D. in Mechanical Engineering from University of Minnesota
and a Master in Fluid Mechanics from Tel Aviv University. Dr. Bar-Meir was the last
student of the late Dr. R.G.E. Eckert. Much of his time has been spend doing research
in the field of heat and mass transfer (related to renewal energy issues) and this includes
fluid mechanics related to manufacturing processes and design. Currently, he spends
time writing books (there are already three very popular books) and softwares for the
POTTO project (see Potto Prologue). The author enjoys to encourage his students to
understand the material beyond the basic requirements of exams.

In his early part of his professional life, Bar-Meir was mainly interested in
elegant models whether they have or not a practical applicability. Now, this author’s
views had changed and the virtue of the practical part of any model becomes the
essential part of his ideas, books and software.

He developed models for Mass Transfer in high concentration that became a
building blocks for many other models. These models are based on analytical solution to
a family of equations1. As the change in the view occurred, Bar-Meir developed models
that explained several manufacturing processes such the rapid evacuation of gas from
containers, the critical piston velocity in a partially filled chamber (related to hydraulic
jump), application of supply and demand to rapid change power system and etc. All
the models have practical applicability. These models have been extended by several
research groups (needless to say with large research grants). For example, the Spanish
Comision Interministerial provides grants TAP97-0489 and PB98-0007, and the CICYT
and the European Commission provides 1FD97-2333 grants for minor aspects of that
models. Moreover, the author’s models were used in numerical works, in GM, British
industry, Spain, and Canada.

In the area of compressible flow, it was commonly believed and taught that
there is only weak and strong shock and it is continue by Prandtl–Meyer function. Bar–

1Where the mathematicians were able only to prove that the solution exists.
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Meir discovered the analytical solution for oblique shock and showed that there is a quiet
buffer between the oblique shock and Prandtl–Meyer. He also build analytical solution
to several moving shock cases. He described and categorized the filling and evacuating
of chamber by compressible fluid in which he also found analytical solutions to cases
where the working fluid was ideal gas. The common explanation to Prandtl–Meyer
function shows that flow can turn in a sharp corner. Engineers have constructed design
that based on this conclusion. Bar-Meir demonstrated that common Prandtl–Meyer
explanation violates the conservation of mass and therefor the turn must be around a
finite radius. The author’s explanations on missing diameter and other issues in fanno
flow and ““naughty professor’s question”” are used in the industry.

In his book “Basics of Fluid Mechanics”, Bar-Meir demonstrated that fluids
must have wavy surface when the materials flow together. All the previous models for
the flooding phenomenon did not have a physical explanation to the dryness. He built
a model to explain the flooding problem (two phase flow) based on the physics. He also
constructed and explained many new categories for two flow regimes.

The author lives with his wife and three children. A past project of his was
building a four stories house, practically from scratch. While he writes his programs and
does other computer chores, he often feels clueless about computers and programing.
While he is known to look like he knows about many things, the author just know to
learn quickly. The author spent years working on the sea (ships) as a engine sea officer
but now the author prefers to remain on solid ground.



Prologue For The POTTO Project

This books series was born out of frustrations in two respects. The first issue is the
enormous price of college textbooks. It is unacceptable that the price of the college
books will be over $150 per book (over 10 hours of work for an average student in The
United States).

The second issue that prompted the writing of this book is the fact that we
as the public have to deal with a corrupted judicial system. As individuals we have to
obey the law, particularly the copyright law with the “infinite2” time with the copyright
holders. However, when applied to “small” individuals who are not able to hire a large
legal firm, judges simply manufacture facts to make the little guy lose and pay for the
defense of his work. On one hand, the corrupted court system defends the “big” guys
and on the other hand, punishes the small “entrepreneur” who tries to defend his or her
work. It has become very clear to the author and founder of the POTTO Project that
this situation must be stopped. Hence, the creation of the POTTO Project. As R. Kook,
one of this author’s sages, said instead of whining about arrogance and incorrectness,
one should increase wisdom. This project is to increase wisdom and humility.

The Potto Project has far greater goals than simply correcting an abusive
Judicial system or simply exposing abusive judges. It is apparent that writing textbooks
especially for college students as a cooperation, like an open source, is a new idea3.
Writing a book in the technical field is not the same as writing a novel. The writing
of a technical book is really a collection of information and practice. There is always
someone who can add to the book. The study of technical material isn’t only done by
having to memorize the material, but also by coming to understand and be able to solve

2After the last decision of the Supreme Court in the case of Eldred v. Ashcroff (see
http://cyber.law.harvard.edu/openlaw/eldredvashcroft for more information) copyrights prac-
tically remain indefinitely with the holder (not the creator).

3In some sense one can view the encyclopedia Wikipedia as an open content project (see
http://en.wikipedia.org/wiki/Main Page). The wikipedia is an excellent collection of articles which
are written by various individuals.
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related problems. The author has not found any technique that is more useful for this
purpose than practicing the solving of problems and exercises. One can be successful
when one solves as many problems as possible. To reach this possibility the collective
book idea was created/adapted. While one can be as creative as possible, there are
always others who can see new aspects of or add to the material. The collective material
is much richer than any single person can create by himself.

The following example explains this point: The army ant is a kind of car-
nivorous ant that lives and hunts in the tropics, hunting animals that are even up to
a hundred kilograms in weight. The secret of the ants’ power lies in their collective
intelligence. While a single ant is not intelligent enough to attack and hunt large prey,
the collective power of their networking creates an extremely powerful intelligence to
carry out this attack4. When an insect which is blind can be so powerful by networking,
so can we in creating textbooks by this powerful tool.

Why would someone volunteer to be an author or organizer of such a book?
This is the first question the undersigned was asked. The answer varies from individual
to individual. It is hoped that because of the open nature of these books, they will
become the most popular books and the most read books in their respected field. For
example, the books on compressible flow and die casting became the most popular
books in their respective area. In a way, the popularity of the books should be one of
the incentives for potential contributors. The desire to be an author of a well–known
book (at least in his/her profession) will convince some to put forth the effort. For
some authors, the reason is the pure fun of writing and organizing educational material.
Experience has shown that in explaining to others any given subject, one also begins
to better understand the material. Thus, contributing to these books will help one
to understand the material better. For others, the writing of or contributing to this
kind of books will serve as a social function. The social function can have at least
two components. One component is to come to know and socialize with many in the
profession. For others the social part is as simple as a desire to reduce the price of
college textbooks, especially for family members or relatives and those students lacking
funds. For some contributors/authors, in the course of their teaching they have found
that the textbook they were using contains sections that can be improved or that are not
as good as their own notes. In these cases, they now have an opportunity to put their
notes to use for others. Whatever the reasons, the undersigned believes that personal
intentions are appropriate and are the author’s/organizer’s private affair.

If a contributor of a section in such a book can be easily identified, then
that contributor will be the copyright holder of that specific section (even within ques-
tion/answer sections). The book’s contributor’s names could be written by their sec-
tions. It is not just for experts to contribute, but also students who happened to be
doing their homework. The student’s contributions can be done by adding a question
and perhaps the solution. Thus, this method is expected to accelerate the creation of
these high quality books.

These books are written in a similar manner to the open source software

4see also in Franks, Nigel R.; ”Army Ants: A Collective Intelligence,” American Scientist, 77:139,
1989 (see for information http://www.ex.ac.uk/bugclub/raiders.html)



CREDITS xli

process. Someone has to write the skeleton and hopefully others will add “flesh and
skin.” In this process, chapters or sections can be added after the skeleton has been
written. It is also hoped that others will contribute to the question and answer sections
in the book. But more than that, other books contain data5 which can be typeset in
LATEX. These data (tables, graphs and etc.) can be redone by anyone who has the time
to do it. Thus, the contributions to books can be done by many who are not experts.
Additionally, contributions can be made from any part of the world by those who wish
to translate the book.

It is hoped that the books will be error-free. Nevertheless, some errors are
possible and expected. Even if not complete, better discussions or better explanations
are all welcome to these books. These books are intended to be “continuous” in the
sense that there will be someone who will maintain and improve the books with time
(the organizer(s)).

These books should be considered more as a project than to fit the traditional
definition of “plain” books. Thus, the traditional role of author will be replaced by an
organizer who will be the one to compile the book. The organizer of the book in some
instances will be the main author of the work, while in other cases only the gate keeper.
This may merely be the person who decides what will go into the book and what will not
(gate keeper). Unlike a regular book, these works will have a version number because
they are alive and continuously evolving.

In the last 5 years three textbooks have been constructed which are available
for download. These books contain innovative ideas which make some chapters the
best in the world. For example, the chapters on Fanno flow and Oblique shock contain
many original ideas such as the full analytical solution to the oblique shock, many
algorithms for calculating Fanno flow parameters which are not found in any other book.
In addition, Potto has auxiliary materials such as the gas dynamics tables (the largest
compressible flow tables collection in the world), Gas Dynamics Calculator (Potto-GDC),
etc.

The combined number downloads of these books is over half a million (De-
cember 2009) or in a rate of 20,000 copies a month. Potto books on compressible flow
and fluid mechanics are used as the main textbook or as a reference book in several
universities around the world. The books are used in more than 165 different countries
around the world. Every month people from about 110 different countries download
these books. The book on compressible flow is also used by “young engineers and
scientists” in NASA according to Dr. Farassat, NASA Langley Research Center.

The undersigned of this document intends to be the organizer/author/coordinator
of the projects in the following areas:

5 Data are not copyrighted.



xlii LIST OF TABLES

Table -1. Books under development in Potto project.

Project
Name

Progress Remarks Version

Availability
for
Public
Download

Compressible Flow beta 0.4.8.2 4

Die Casting alpha 0.0.3 4

Dynamics NSY 0.0.0 6

Fluid Mechanics alpha 0.1.1 4

Heat Transfer NSY Based
on
Eckert

0.0.0 6

Mechanics NSY 0.0.0 6

Open Channel Flow NSY 0.0.0 6

Statics early
alpha

first
chapter

0.0.1 6

Strength of Material NSY 0.0.0 6

Thermodynamics early
alpha

0.0.01 6

Two/Multi phases
flow

NSY Tel-
Aviv’notes

0.0.0 6

NSY = Not Started Yet
The meaning of the progress is as:

� The Alpha Stage is when some of the chapters are already in a rough draft;

� in Beta Stage is when all or almost all of the chapters have been written and are
at least in a draft stage;

� in Gamma Stage is when all the chapters are written and some of the chapters
are in a mature form; and

� the Advanced Stage is when all of the basic material is written and all that is left
are aspects that are active, advanced topics, and special cases.

The mature stage of a chapter is when all or nearly all the sections are in a mature
stage and have a mature bibliography as well as numerous examples for every section.
The mature stage of a section is when all of the topics in the section are written, and
all of the examples and data (tables, figures, etc.) are already presented. While some
terms are defined in a relatively clear fashion, other definitions give merely a hint on
the status. But such a thing is hard to define and should be enough for this stage.

The idea that a book can be created as a project has mushroomed from the
open source software concept, but it has roots in the way science progresses. However,
traditionally books have been improved by the same author(s), a process in which books
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have a new version every a few years. There are book(s) that have continued after their
author passed away, i.e., the Boundary Layer Theory originated6 by Hermann Schlichting
but continues to this day. However, projects such as the Linux Documentation project
demonstrated that books can be written as the cooperative effort of many individuals,
many of whom volunteered to help.

Writing a textbook is comprised of many aspects, which include the actual
writing of the text, writing examples, creating diagrams and figures, and writing the
LATEX macros7 which will put the text into an attractive format. These chores can be
done independently from each other and by more than one individual. Again, because
of the open nature of this project, pieces of material and data can be used by different
books.

6Originally authored by Dr. Schlichting, who passed way some years ago. A new version is created
every several years.

7One can only expect that open source and readable format will be used for this project. But more
than that, only LATEX, and perhaps troff, have the ability to produce the quality that one expects for
these writings. The text processes, especially LATEX, are the only ones which have a cross platform ability
to produce macros and a uniform feel and quality. Word processors, such as OpenOffice, Abiword, and
Microsoft Word software, are not appropriate for these projects. Further, any text that is produced
by Microsoft and kept in “Microsoft” format are against the spirit of this project In that they force
spending money on Microsoft software.
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Prologue For This Book

Version 0.3.0.5 March 1, 2011

pages 400 size 3.5M

A look on the progress which occur in the two and half years since the last time this
page has been changed, shows that the book scientific part almost tripled. Three
new chapters were added included that dealing with integral analysis and one chapter
on differential analysis. Pushka equation (equation describing the density variation in
great depth for slightly compressible material) was added yet not included in any other
textbook. While the chapter on the fluid static is the best in the world (according to
many including this auther8), some material has to be expanded.

The potto style file has improved and including figures inside examples. Be-
side the Pushka equation, the book contains material that was not published in other
books. Recently, many heavy duty examples were enhanced and thus the book quality.
The meaning heavy duty example refers here to generalized cases. For example, showing
the instability of the upside cone versus dealing with upside cone with spesific angle.

Version 0.1.8 August 6, 2008

pages 189 size 2.6M

When this author was an undergraduate student, he spend time to study the wave
phenomenon at the interface of open channel flow. This issue is related to renewal
energy of extracting energy from brine solution (think about the Dead Sea, so much
energy). The common explanation to the wave existence was that there is always a
disturbance which causes instability. This author was bothered by this explanation.

8While this bragging is not appropiate in this kind of book it is to point the missing and aditional
further improments needed.
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Now, in this version, it was proven that this wavy interface is created due to the need to
satisfy the continuous velocity and shear stress at the interface and not a disturbance.

Potto project books are characterized by high quality which marked by pre-
sentation of the new developments and clear explanations. This explanation (on the
wavy interface) demonstrates this characteristic of Potto project books. The intro-
duction to multi–phase is another example to this quality. While it is a hard work to
discover and develop and bring this information to the students, it is very satisfying for
the author. The number of downloads of this book results from this quality. Even in
this early development stage, number of downloads per month is about 5000 copies.

Version 0.1 April 22, 2008

pages 151 size 1.3M

The topic of fluid mechanics is common to several disciplines: mechanical engineering,
aerospace engineering, chemical engineering, and civil engineering. In fact, it is also
related to disciplines like industrial engineering, and electrical engineering. While the
emphasis is somewhat different in this book, the common material is presented and
hopefully can be used by all. One can only admire the wonderful advances done by the
previous geniuses who work in this field. In this book it is hoped to insert, what and
when a certain model is suitable than other models.

One of the difference in this book is the insertion of the introduction to
multiphase flow. Clearly, multiphase is an advance topic. However, some minimal
familiarity can be helpful for many engineers who have to deal with non pure single
phase fluid.

This book is the third book in the series of POTTO project books. POTTO
project books are open content textbooks so everyone are welcome to joint in. The
topic of fluid mechanics was chosen just to fill the introduction chapter to compressible
flow. During the writing it became apparent that it should be a book in its own right.
In writing the chapter on fluid statics, there was a realization that it is the best chapter
written on this topic. It is hoped that the other chapters will be as good this one.

This book is written in the spirit of my adviser and mentor E.R.G. Eckert.
Eckert, aside from his research activity, wrote the book that brought a revolution in
the education of the heat transfer. Up to Egret’s book, the study of heat transfer
was without any dimensional analysis. He wrote his book because he realized that the
dimensional analysis utilized by him and his adviser (for the post doc), Ernst Schmidt,
and their colleagues, must be taught in engineering classes. His book met strong
criticism in which some called to “burn” his book. Today, however, there is no known
place in world that does not teach according to Eckert’s doctrine. It is assumed that the
same kind of individual(s) who criticized Eckert’s work will criticize this work. Indeed,
the previous book, on compressible flow, met its opposition. For example, anonymous
Wikipedia user name EMBaero claimed that the material in the book is plagiarizing, he
just doesn’t know from where and what. Maybe that was the reason that he felt that is
okay to plagiarize the book on Wikipedia. These criticisms will not change the future
or the success of the ideas in this work. As a wise person says “don’t tell me that it is
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wrong, show me what is wrong”; this is the only reply. With all the above, it must be
emphasized that this book is not expected to revolutionize the field but change some
of the way things are taught.

The book is organized into several chapters which, as a traditional textbook,
deals with a basic introduction to the fluid properties and concepts (under construction).
The second chapter deals with Thermodynamics. The third book chapter is a review
of mechanics. The next topic is statics. When the Static Chapter was written, this
author did not realize that so many new ideas will be inserted into this topic. As
traditional texts in this field, ideal flow will be presented with the issues of added mass
and added forces (under construction). The classic issue of turbulence (and stability)
will be presented. An introduction to multi–phase flow, not a traditional topic, will
be presented next (again under construction). The next two chapters will deals with
open channel flow and gas dynamics. At this stage, dimensional analysis will be present
(again under construction).
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How This Book Was Written

This book started because I needed an introduction to the compressible flow book.
After a while it seems that is easier to write a whole book than the two original planned
chapters. In writing this book, it was assumed that introductory book on fluid me-
chanics should not contained many new ideas but should be modern in the material
presentation. There are numerous books on fluid mechanics but none of which is open
content. The approach adapted in this book is practical, and more hands–on approach.
This statement really meant that the book is intent to be used by students to solve
their exams and also used by practitioners when they search for solutions for practical
problems. So, issue of proofs so and so are here only either to explain a point or have
a solution of exams. Otherwise, this book avoids this kind of issues.

The structure of Hansen, Streeter and Wylie, and Shames books were adapted
and used as a scaffolding for this book. This author was influenced by Streeter and
Wylie book which was his undergrad textbooks. The chapters are not written in order.
The first 4 chapters were written first because they were supposed to be modified and
used as fluid mechanics introduction in “Fundamentals of Compressible Flow.” Later,
multi–phase flow chapter was written.

The presentation of some of the chapters is slightly different from other
books because the usability of the computers. The book does not provide the old style
graphical solution methods yet provides the graphical explanation of things.

Of course, this book was written on Linux (Micro$oftLess book). This book
was written using the vim editor for editing (sorry never was able to be comfortable
with emacs). The graphics were done by TGIF, the best graphic program that this
author experienced so far. The figures were done by gle. The spell checking was done
by ispell, and hope to find a way to use gaspell, a program that currently cannot be
used on new Linux systems. The figure in cover page was created by Genick Bar-Meir,
and is copyleft by him.
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Preface

"In the beginning, the POTTO project was without form,

and void; and emptiness was upon the face of the bits

and files. And the Fingers of the Author moved upon

the face of the keyboard. And the Author said, Let

there be words, and there were words." 9.

This book, Basics of Fluid Mechanics, describes the fundamentals of fluid
mechanics phenomena for engineers and others. This book is designed to replace all
introductory textbook(s) or instructor’s notes for the fluid mechanics in undergraduate
classes for engineering/science students but also for technical peoples. It is hoped that
the book could be used as a reference book for people who have at least some basics
knowledge of science areas such as calculus, physics, etc.

The structure of this book is such that many of the chapters could be usable
independently. For example, if you need information about, say, statics’ equations, you
can read just chapter (4). I hope this makes the book easier to use as a reference
manual. However, this manuscript is first and foremost a textbook, and secondly a
reference manual only as a lucky coincidence.

I have tried to describe why the theories are the way they are, rather than just
listing “seven easy steps” for each task. This means that a lot of information is presented
which is not necessary for everyone. These explanations have been marked as such and
can be skipped.10 Reading everything will, naturally, increase your understanding of the
many aspects of fluid mechanics. Many in the industry, have called and emailed this
author with questions since this book is only source in the world of some information.
These questions have lead to more information and further explantion that is not found
anywhre else.

This book is written and maintained on a volunteer basis. Like all volunteer
work, there is a limit on how much effort I was able to put into the book and its
organization. Moreover, due to the fact that English is my third language and time
limitations, the explanations are not as good as if I had a few years to perfect them.
Nevertheless, I believe professionals working in many engineering fields will benefit from

9To the power and glory of the mighty God. This book is only to explain his power.
10At the present, the book is not well organized. You have to remember that this book is a work in

progress.
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this information. This book contains many worked examples, which can be very useful
for many. In fact, this book contains material that was not published anywhere else.

I have left some issues which have unsatisfactory explanations in the book,
marked with a Mata mark. I hope to improve or to add to these areas in the near future.
Furthermore, I hope that many others will participate of this project and will contribute
to this book (even small contributions such as providing examples or editing mistakes
are needed).

I have tried to make this text of the highest quality possible and am in-
terested in your comments and ideas on how to make it better. Incorrect language,
errors, ideas for new areas to cover, rewritten sections, more fundamental material,
more mathematics (or less mathematics); I am interested in it all. I am particularly in-
terested in the best arrangement of the book. If you want to be involved in the editing,
graphic design, or proofreading, please drop me a line. You may contact me via Email
at “barmeir@gmail.com”.

Naturally, this book contains material that never was published before (sorry
cannot avoid it). This material never went through a close content review. While close
content peer review and publication in a professional publication is excellent idea in
theory. In practice, this process leaves a large room to blockage of novel ideas and
plagiarism. If you would like be “peer reviews” or critic to my new ideas please send
me your comment(s). Even reaction/comments from individuals like David Marshall11.

Several people have helped me with this book, directly or indirectly. I would
like to especially thank to my adviser, Dr. E. R. G. Eckert, whose work was the inspiration
for this book. I also would like to thank to Jannie McRotien (Open Channel Flow
chapter) and Tousher Yang for their advices, ideas, and assistance.

The symbol META was added to provide typographical conventions to blurb
as needed. This is mostly for the author’s purposes and also for your amusement. There
are also notes in the margin, but those are solely for the author’s purposes, ignore them
please. They will be removed gradually as the version number advances.

I encourage anyone with a penchant for writing, editing, graphic ability, LATEX
knowledge, and material knowledge and a desire to provide open content textbooks and
to improve them to join me in this project. If you have Internet e-mail access, you can
contact me at “barmeir@gmail.com”.

11Dr. Marshall wrote to this author that the author should review other people work before he
write any thing new (well, literature review is always good, isn’t it?). Over ten individuals wrote me
about this letter. I am asking from everyone to assume that his reaction was innocent one. While
his comment looks like unpleasant reaction, it brought or cause the expansion of the explanation for
the oblique shock. However, other email that imply that someone will take care of this author aren’t
appreciated.



To Do List and Road Map

This book isn’t complete and probably never will be completed. There will always new
problems to add or to polish the explanations or include more new materials. Also issues
that associated with the book like the software has to be improved. It is hoped the
changes in TEX and LATEX related to this book in future will be minimal and minor. It is
hoped that the style file will be converged to the final form rapidly. Nevertheless, there
are specific issues which are on the “table” and they are described herein.

At this stage, many chapters are missing. Specific missing parts from ev-
ery chapters are discussed below. These omissions, mistakes, approach problems are
sometime appears in the book under the Meta simple like this

Meta
sample this part.

Meta End
You are always welcome to add a new material: problem, question, illustration or photo
of experiment. Material can be further illuminate. Additional material can be provided
to give a different angle on the issue at hand.

Properties

The chapter isn’t in development stage yet.

Open Channel Flow

The chapter isn’t in the development stage yet. Some parts were taken from Funda-
mentals of Die Casting Design book and are in a process of improvement.

liii
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CHAPTER 1

Introduction to Fluid Mechanics

1.1 What is Fluid Mechanics?

Fluid mechanics deals with the study of all fluids under static and dynamic situations.
Fluid mechanics is a branch of continuous mechanics which deals with a relationship
between forces, motions, and statical conditions in a continuous material. This study
area deals with many and diversified problems such as surface tension, fluid statics,
flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc.
In fact, almost any action a person is doing involves some kind of a fluid mechanics
problem. Furthermore, the boundary between the solid mechanics and fluid mechanics
is some kind of gray shed and not a sharp distinction (see Figure 1.1 for the complex
relationships between the different branches which only part of it should be drawn in
the same time.). For example, glass appears as a solid material, but a closer look
reveals that the glass is a liquid with a large viscosity. A proof of the glass “liquidity” is
the change of the glass thickness in high windows in European Churches after hundred
years. The bottom part of the glass is thicker than the top part. Materials like sand
(some call it quick sand) and grains should be treated as liquids. It is known that these
materials have the ability to drown people. Even material such as aluminum just below
the mushy zone1 also behaves as a liquid similarly to butter. Furthermore, material
particles that “behaves” as solid mixed with liquid creates a mixture that behaves as a
complex2 liquid. After it was established that the boundaries of fluid mechanics aren’t
sharp, most of the discussion in this book is limited to simple and (mostly) Newtonian
(sometimes power fluids) fluids which will be defined later.

The fluid mechanics study involve many fields that have no clear boundaries
between them. Researchers distinguish between orderly flow and chaotic flow as the

1Mushy zone zone refers to to aluminum alloy with partially solid and partially liquid phases.
2It can be viewed as liquid solid multiphase flow.

1



2 CHAPTER 1. INTRODUCTION TO FLUID MECHANICS

Continuous Mechanics

Solid Mechanics

Fluid
Statics

Fluid
Dynamics

Fluid Mechanics
something 
between

Boundaries
problems

Internal
Flow

Turbulent
FlowLaminar

Flow

Multi phase
flow

Stability
problems

Fig. -1.1. Diagram to explain part of relationships of fluid mechanics branches.

laminar flow and the turbulent flow. The fluid mechanics can also be distinguish between
a single phase flow and multiphase flow (flow made more than one phase or single
distinguishable material). The last boundary (as all the boundaries in fluid mechanics)
isn’t sharp because fluid can go through a phase change (condensation or evaporation)
in the middle or during the flow and switch from a single phase flow to a multi phase
flow. Moreover, flow with two phases (or materials) can be treated as a single phase
(for example, air with dust particle).

After it was made clear that the boundaries of fluid mechanics aren’t sharp,
the study must make arbitrary boundaries between fields. Then the dimensional anal-
ysis can be used explain why in certain cases one distinguish area/principle is more
relevant than the other and some effects can be neglected. Or, when a general model
is need because more parameters are effecting the situation. It is this author’s per-
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sonal experience that the knowledge and ability to know in what area the situation
lay is one of the main problems. For example, engineers in software company (EKK
Inc, http://ekkinc.com/HTML ) analyzed a flow of a complete still liquid assuming a
complex turbulent flow model. Such absurd analysis are common among engineers who
do not know which model can be applied. Thus, one of the main goals of this book
is to explain what model should be applied. Before dealing with the boundaries, the
simplified private cases must be explained.

There are two main approaches of presenting an introduction of fluid mechanics
materials. The first approach introduces the fluid kinematic and then the basic gov-
erning equations, to be followed by stability, turbulence, boundary layer and internal
and external flow. The second approach deals with the Integral Analysis to be followed
with Differential Analysis, and continue with Empirical Analysis. These two approaches
pose a dilemma to anyone who writes an introductory book for the fluid mechanics.
These two approaches have justifications and positive points. Reviewing many books
on fluid mechanics made it clear, there isn’t a clear winner. This book attempts to find
a hybrid approach in which the kinematic is presented first (aside to standard initial four
chapters) follow by Integral analysis and continued by Differential analysis. The ideal
flow (frictionless flow) should be expanded compared to the regular treatment. This
book is unique in providing chapter on multiphase flow. Naturally, chapters on open
channel flow (as a sub class of the multiphase flow) and compressible flow (with the
latest developments) are provided.

1.2 Brief History

The need to have some understanding of fluid mechanics started with the need to obtain
water supply. For example, people realized that wells have to be dug and crude pumping
devices need to be constructed. Later, a large population created a need to solve waste
(sewage) and some basic understanding was created. At some point, people realized
that water can be used to move things and provide power. When cities increased to
a larger size, aqueducts were constructed. These aqueducts reached their greatest size
and grandeur in those of the City of Rome and China.

Yet, almost all knowledge of the ancients can be summarized as application of
instincts, with the exception Archimedes (250 B.C.) on the principles of buoyancy. For
example, larger tunnels built for a larger water supply, etc. There were no calculations
even with the great need for water supply and transportation. The first progress in fluid
mechanics was made by Leonardo Da Vinci (1452-1519) who built the first chambered
canal lock near Milan. He also made several attempts to study the flight (birds) and
developed some concepts on the origin of the forces. After his initial work, the knowledge
of fluid mechanics (hydraulic) increasingly gained speed by the contributions of Galileo,
Torricelli, Euler, Newton, Bernoulli family, and D’Alembert. At that stage theory and
experiments had some discrepancy. This fact was acknowledged by D’Alembert who
stated that, “The theory of fluids must necessarily be based upon experiment.” For
example the concept of ideal liquid that leads to motion with no resistance, conflicts
with the reality.
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This discrepancy between theory and practice is called the “D’Alembert para-
dox” and serves to demonstrate the limitations of theory alone in solving fluid problems.
As in thermodynamics, two different of school of thoughts were created: the first be-
lieved that the solution will come from theoretical aspect alone, and the second believed
that solution is the pure practical (experimental) aspect of fluid mechanics. On the
theoretical side, considerable contribution were made by Euler, La Grange, Helmhoitz,
Kirchhoff, Rayleigh, Rankine, and Kelvin. On the “experimental” side, mainly in pipes
and open channels area, were Brahms, Bossut, Chezy, Dubuat, Fabre, Coulomb, Dupuit,
d’Aubisson, Hagen, and Poisseuille.

In the middle of the nineteen century, first Navier in the molecular level and
later Stokes from continuous point of view succeeded in creating governing equations
for real fluid motion. Thus, creating a matching between the two school of thoughts:
experimental and theoretical. But, as in thermodynamics, people cannot relinquish
control. As results it created today “strange” names: Hydrodynamics, Hydraulics, Gas
Dynamics, and Aeronautics.

The Navier-Stokes equations, which describes the flow (or even Euler equa-
tions), were considered unsolvable during the mid nineteen century because of the high
complexity. This problem led to two consequences. Theoreticians tried to simplify the
equations and arrive at approximated solutions representing specific cases. Examples
of such work are Hermann von Helmholtz’s concept of vortexes (1858), Lanchester’s
concept of circulatory flow (1894), and the Kutta-Joukowski circulation theory of lift
(1906). The experimentalists, at the same time proposed many correlations to many
fluid mechanics problems, for example, resistance by Darcy, Weisbach, Fanning, Gan-
guillet, and Manning. The obvious happened without theoretical guidance, the empirical
formulas generated by fitting curves to experimental data (even sometime merely pre-
senting the results in tabular form) resulting in formulas that the relationship between
the physics and properties made very little sense.

At the end of the twenty century, the demand for vigorous scientific knowledge
that can be applied to various liquids as opposed to formula for every fluid was created
by the expansion of many industries. This demand coupled with new several novel
concepts like the theoretical and experimental researches of Reynolds, the development
of dimensional analysis by Rayleigh, and Froude’s idea of the use of models change
the science of the fluid mechanics. Perhaps the most radical concept that effects the
fluid mechanics is of Prandtl’s idea of boundary layer which is a combination of the
modeling and dimensional analysis that leads to modern fluid mechanics. Therefore,
many call Prandtl as the father of modern fluid mechanics. This concept leads to
mathematical basis for many approximations. Thus, Prandtl and his students Blasius,
von Karman, Meyer, and Blasius and several other individuals as Nikuradse, Rose,
Taylor, Bhuckingham, Stanton, and many others, transformed the fluid mechanics to
today modern science.

While the understanding of the fundamentals did not change much, after World
War Two, the way how it was calculated changed. The introduction of the computers
during the 60s and much more powerful personal computer has changed the field. There
are many open source programs that can analyze many fluid mechanics situations. To-
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day many problems can be analyzed by using the numerical tools and provide reasonable
results. These programs in many cases can capture all the appropriate parameters and
adequately provide a reasonable description of the physics. However, there are many
other cases that numerical analysis cannot provide any meaningful result (trends). For
example, no weather prediction program can produce good engineering quality results
(where the snow will fall within 50 kilometers accuracy. Building a car with this ac-
curacy is a disaster). In the best scenario, these programs are as good as the input
provided. Thus, assuming turbulent flow for still flow simply provides erroneous results
(see for example, EKK, Inc).

1.3 Kinds of Fluids

Some differentiate fluid from solid by the reaction to shear stress. It is a known fact
said that the fluid continuously and permanently deformed under shear stress while solid
exhibits a finite deformation which does not change with time. It is also said that liquid
cannot return to their original state after the deformation. This differentiation leads to
three groups of materials: solids and liquids. This test creates a new material group
that shows dual behaviors; under certain limits; it behaves like solid and under others it
behaves like liquid (see Figure 1.1). The study of this kind of material called rheology
and it will (almost) not be discussed in this book. It is evident from this discussion that
when a liquid is at rest, no shear stress is applied.

The fluid is mainly divided into two categories: liquids and gases. The main
difference between the liquids and gases state is that gas will occupy the whole volume
while liquids has an almost fix volume. This difference can be, for most practical pur-
poses considered, sharp even though in reality this difference isn’t sharp. The difference
between a gas phase to a liquid phase above the critical point are practically minor. But
below the critical point, the change of water pressure by 1000% only change the volume
by less than 1 percent. For example, a change in the volume by more 5% will required
tens of thousands percent change of the pressure. So, if the change of pressure is sig-
nificantly less than that, then the change of volume is at best 5%. Hence, the pressure
will not affect the volume. In gaseous phase, any change in pressure directly affects the
volume. The gas fills the volume and liquid cannot. Gas has no free interface/surface
(since it does fill the entire volume).

There are several quantities that have to be addressed in this discussion. The
first is force which was reviewed in physics. The unit used to measure is [N]. It must be
remember that force is a vector, e.g it has a direction. The second quantity discussed
here is the area. This quantity was discussed in physics class but here it has an additional
meaning, and it is referred to the direction of the area. The direction of area is perpen-
dicular to the area. The area is measured in [m2]. Area of three–dimensional object
has no single direction. Thus, these kinds of areas should be addressed infinitesimally
and locally.

The traditional quantity, which is force per area has a new meaning. This
is a result of division of a vector by a vector and it is referred to as tensor. In this
book, the emphasis is on the physics, so at this stage the tensor will have to be broken
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into its components. Later, the discussion on the mathematical meaning is presented
(later version). For the discussion here, the pressure has three components, one in the
area direction and two perpendicular to the area. The pressure component in the area
direction is called pressure (great way to confuse, isn’t it?). The other two components
are referred as the shear stresses. The units used for the pressure components is [N/m2].

ρ

log ℓ

ǫ

Fig. -1.2. Density as a function of
the size of sample.

The density is a property which requires that
liquid to be continuous. The density can be changed
and it is a function of time and space (location) but
must have a continues property. It doesn’t mean that
a sharp and abrupt change in the density cannot oc-
cur. It referred to the fact that density is independent
of the sampling size. Figure 1.2 shows the density as
a function of the sample size. After certain sample
size, the density remains constant. Thus, the density
is defined as

ρ = lim
∆V−→ε

∆m

∆V
(1.1)

It must be noted that ε is chosen so that the continuous assumption is not broken,
that is, it did not reach/reduced to the size where the atoms or molecular statistical
calculations are significant (see Figure 1.2 for point where the green lines converge to
constant density). When this assumption is broken, then, the principles of statistical
mechanics must be utilized.

1.4 Shear Stress

h

F
∆ℓ

β

y

U0x

x

Fig. -1.3. Schematics to describe the shear
stress in fluid mechanics.

The shear stress is part of the pressure tensor.
However, here, and many parts of the book,
it will be treated as a separate issue. In solid
mechanics, the shear stress is considered as the
ratio of the force acting on area in the direc-
tion of the forces perpendicular to area. Dif-
ferent from solid, fluid cannot pull directly but
through a solid surface. Consider liquid that
undergoes a shear stress between a short dis-
tance of two plates as shown in Figure (1.3).

The upper plate velocity generally will be

U = f(A,F, h) (1.2)

Where A is the area, the F denotes the force, h is the distance between the plates.
From solid mechanics study, it was shown that when the force per area increases, the
velocity of the plate increases also. Experiments show that the increase of height will
increase the velocity up to a certain range. Consider moving the plate with a zero
lubricant (h ∼ 0) (results in large force) or a large amount of lubricant (smaller force).
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In this discussion, the aim is to develop differential equation, thus the small distance
analysis is applicable.

For cases where the dependency is linear, the following can be written

U ∝ hF

A
(1.3)

Equations (1.3) can be rearranged to be

U

h
∝ F

A
(1.4)

Shear stress was defined as

τxy =
F

A
(1.5)

The index x represent the “direction of the shear stress while the y represent the
direction of the area(perpendicular to the area). From equations (1.4) and (1.5) it
follows that ratio of the velocity to height is proportional to shear stress. Hence,
applying the coefficient to obtain a new equality as

τxy = µ
U

h
(1.6)

Where µ is called the absolute viscosity or dynamic viscosity which will be discussed
later in this chapter in a great length.

t0 t1 t2 t3< < <

Fig. -1.4. The deformation of fluid due to shear
stress as progression of time.

In steady state, the distance the
upper plate moves after small amount of
time, δt is

d` = U δt (1.7)

From Figure 1.4 it can be noticed that
for a small angle, δβ ∼= sin β, the regular
approximation provides

d` = U δt =

geometry︷︸︸︷
h δβ (1.8)

From equation (1.8) it follows that

U = h
δβ

δt
(1.9)

Combining equation (1.9) with equation (1.6) yields

τxy = µ
δβ

δt
(1.10)
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If the velocity profile is linear between the plate (it will be shown later that it is
consistent with derivations of velocity), then it can be written for small a angel that

δβ

δt
=

dU

dy
(1.11)

Materials which obey equation (1.10) referred to as Newtonian fluid. For this kind of
substance

τxy = µ
dU

dy
(1.12)

Newtonian fluids are fluids which the ratio is constant. Many fluids fall into this
category such as air, water etc. This approximation is appropriate for many other fluids
but only within some ranges.

Equation (1.9) can be interpreted as momentum in the x direction transferred
into the y direction. Thus, the viscosity is the resistance to the flow (flux) or the
movement. The property of viscosity, which is exhibited by all fluids, is due to the
existence of cohesion and interaction between fluid molecules. These cohesion and
interactions hamper the flux in y–direction. Some referred to shear stress as viscous
flux of x–momentum in the y–direction. The units of shear stress are the same as flux
per time as following

F

A

[
kg m

sec2

1
m2

]
=

ṁU

A

[
kg

sec

m

sec

1
m2

]

Thus, the notation of τxy is easier to understand and visualize. In fact, this interpretation
is more suitable to explain the molecular mechanism of the viscosity. The units of
absolute viscosity are [N sec/m2].

Example 1.1:
A space of 1 [cm] width between two large plane surfaces is filled with glycerin. Calculate
the force that is required to drag a very thin plate of 1 [m2] at a speed of 0.5 m/sec.
It can be assumed that the plates remains in equidistant from each other and steady
state is achieved instantly.

Solution

Assuming Newtonian flow, the following can be written (see equation (1.6))

F =
AµU

h
∼ 1× 1.069× 0.5

0.01
= 53.45[N ]

End Solution

Example 1.2:
Castor oil at 25◦C fills the space between two concentric cylinders of 0.2[m] and 0.1[m]
diameters with height of 0.1 [m]. Calculate the torque required to rotate the inner
cylinder at 12 rpm, when the outer cylinder remains stationary. Assume steady state
conditions.
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Solution

The velocity is

U = r θ̇ = 2 π ri rps = 2× π × 0.1×
rps︷ ︸︸ ︷

12/60 = 0.4 π ri

Where rps is revolution per second.
The same way as in example (1.1), the moment can be calculated as the force

times the distance as

M = F ` =

ri︷︸︸︷
`

2 π ri h︷︸︸︷
A µU

ro − ri

In this case ro − ri = h thus,

M =
2 π2

ri︷︸︸︷
0.13 ¢h

µ︷ ︸︸ ︷
0.986 0.4

¢h
∼ .0078[N m]

End Solution

1.5 Viscosity

1.5.1 General
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Fig. -1.5. The different of power fluids families.

Viscosity varies widely with tem-
perature. However, tempera-
ture variation has an opposite
effect on the viscosities of liq-
uids and gases. The difference
is due to their fundamentally dif-
ferent mechanism creating vis-
cosity characteristics. In gases,
molecules are sparse and cohe-
sion is negligible, while in the
liquids, the molecules are more
compact and cohesion is more
dominate. Thus, in gases, the
exchange of momentum between
layers brought as a result of
molecular movement normal to the general direction of flow, and it resists the flow.
This molecular activity is known to increase with temperature, thus, the viscosity of
gases will increase with temperature. This reasoning is a result of the considerations of
the kinetic theory. This theory indicates that gas viscosities vary directly with the square
root of temperature. In liquids, the momentum exchange due to molecular movement
is small compared to the cohesive forces between the molecules. Thus, the viscosity is
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primarily dependent on the magnitude of these cohesive forces. Since these forces de-
crease rapidly with increases of temperature, liquid viscosities decrease as temperature
increases.

Fig. -1.6. Nitrogen (left) and Argon (right) viscosity as a function of the temperature and
pressure after Lemmon and Jacobsen.

Figure 1.6 demonstrates that viscosity increases slightly with pressure, but this
variation is negligible for most engineering problems. Well above the critical point, both
materials are only a function of the temperature. On the liquid side below the critical
point, the pressure has minor effect on the viscosity. It must be stress that the viscosity
in the dome is meaningless. There is no such a thing of viscosity at 30% liquid. It
simply depends on the structure of the flow as will be discussed in the chapter on multi
phase flow. The lines in the above diagrams are only to show constant pressure lines.
Oils have the greatest increase of viscosity with pressure which is a good thing for many
engineering purposes.

1.5.2 Non–Newtonian Fluids

Fig. -1.7. The shear stress as a function
of the shear rate.

In equation (1.5), the relationship between the
velocity and the shear stress was assumed to be
linear. Not all the materials obey this relation-
ship. There is a large class of materials which
shows a non-linear relationship with velocity for
any shear stress. This class of materials can be
approximated by a single polynomial term that is
a = bxn. From the physical point of view, the co-
efficient depends on the velocity gradient. This
relationship is referred to as power relationship
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and it can be written as

τ =

viscosity︷ ︸︸ ︷
K

(
dU

dx

)n−1 (
dU

dx

)
(1.13)

The new coefficients (n,K) in equation (1.13) are constant. When n = 1 equation
represent Newtonian fluid and K becomes the familiar µ. The viscosity coefficient is
always positive. When n, is above one, the liquid is dilettante. When n is below one,
the fluid is pseudoplastic. The liquids which satisfy equation (1.13) are referred to as
purely viscous fluids. Many fluids satisfy the above equation. Fluids that show increase
in the viscosity (with increase of the shear) referred to as thixotropic and those that
show decrease are called reopectic fluids (see Figure 1.5).

Materials which behave up to a certain shear stress as a solid and above it as
a liquid are referred as Bingham liquids. In the simple case, the “liquid side” is like
Newtonian fluid for large shear stress. The general relationship for simple Bingham flow
is

τxy = −µ ± τ0 if |τyx| > τ0 (1.14)

dUx

dy
= 0 if |τyx| < τ0 (1.15)

There are materials that simple Bingham model does not provide dequate explanation
and a more sophisticate model is required. The Newtonian part of the model has to
be replaced by power liquid. For example, according to Ferraris at el3 concrete behaves
as shown in Figure 1.7. However, for most practical purposes, this kind of figures isn’t
used in regular engineering practice.

1.5.3 Kinematic Viscosity
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Fig. -1.8. Air viscosity as a function
of the temperature.

The kinematic viscosity is another way to look at the
viscosity. The reason for this new definition is that
some experimental data are given in this form. These
results also explained better using the new definition.
The kinematic viscosity embraces both the viscosity
and density properties of a fluid. The above equation
shows that the dimensions of ν to be square meter
per second, [m2/sec], which are acceleration units (a
combination of kinematic terms). This fact explains
the name “kinematic” viscosity. The kinematic viscosity is defined as

ν =
µ

ρ
(1.16)

3C. Ferraris, F. de Larrard and N. Martys, Materials Science of Concrete VI, S. Mindess and J.
Skalny, eds., 215-241 (2001)
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The gas density decreases with the temperature. However, The increase of the
absolute viscosity with the temperature is enough to overcome the increase of density
and thus, the kinematic viscosity also increase with the temperature for many materials.
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Fig. -1.9. Water viscosity as a func-
tion temperature.

1.5.4 Estimation of The Viscosity

The absolute viscosity of many fluids relatively
doesn’t change with the pressure but very sensitive to
temperature. For isothermal flow, the viscosity can
be considered constant in many cases. The variations
of air and water as a function of the temperature at
atmospheric pressure are plotted in Figures 1.8 and
1.9.

Some common materials (pure and mixture)
have expressions that provide an estimate. For many
gases, Sutherland’s equation is used and according to the literature, provides reasonable
results4 for the range of −40◦C to 1600◦C

µ = µ0
0.555 Ti0 + Suth

0.555 Tin + Suth

(
T

T0

) 3
2

(1.17)

Where
.

Example 1.3:
Calculate the viscosity of air at 800K based on Sutherland’s equation. Use the data
provide in Table 1.1.

Solution

Applying the constants from Suthelnd’s table provides

µ = 0.00001827× 0.555× 524.07 + 120
0.555× 800 + 120

×
(

800
524.07

) 3
2

∼ 2.51 10−5

[
N sec

m2

]

The viscosity increases almost by 40%. The observed viscosity is about∼ 3.710−5
[

N sec
m2

]
.

End Solution

4This author is ambivalent about this statement.
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````````````Material
coefficients Chemical

formula
Sutherland TiO[K] µ0(N sec/m2)

ammonia NH3 370 527.67 0.00000982
standard air 120 524.07 0.00001827
carbon dioxide CO2 240 527.67 0.00001480
carbon monoxide CO 118 518.67 0.00001720
hydrogen H2 72 528.93 0.0000876

nitrogen N2 111 540.99 0.0001781
oxygen O2 127 526.05 0.0002018
sulfur dioxide SO2 416 528.57 0.0001254

Table -1.1. The list for Sutherland’s equation coefficients for selected materials.

Substance Chemical
formula

Temperature
T [◦C] Viscosity [N sec

m2 ]

i− C4 H10 23 0.0000076

CH4 20 0.0000109
CO2 20 0.0000146

oxygen O2 20 0.0000203
mercury vapor Hg 380 0.0000654

Table -1.2. Viscosity of selected gases.
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Table -1.3. Viscosity of selected liquids.

Chemical
component

Chemical
formula

Temperature
T [◦C] Viscosity [N sec

m2 ]

(C2H5)O 20 0.000245

C6H6 20 0.000647
Br2 26 0.000946

C2H5OH 20 0.001194
Hg 25 0.001547

H2SO4 25 0.01915

Olive Oil 25 0.084
Castor Oil 25 0.986
Clucuse 25 5-20
Corn Oil 20 0.072
SAE 30 - 0.15-0.200

SAE 50 ∼ 25◦C 0.54

SAE 70 ∼ 25◦C 1.6
Ketchup ∼ 20◦C 0,05
Ketchup ∼ 25◦C 0,098
Benzene ∼ 20◦C 0.000652
Firm glass - ∼ 1× 107

Glycerol 20 1.069
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Fig. -1.10. Liquid metals viscosity as a
function of the temperature.

Liquid metal can be considered as a New-
tonian fluid for many applications. Further-
more, many aluminum alloys are behaving as
a Newtonian liquid until the first solidification
appears (assuming steady state thermodynam-
ics properties). Even when there is a solidifi-
cation (mushy zone), the metal behavior can
be estimated as a Newtonian material (further
reading can be done in this author’s book “Fundamentals of Die Casting Design”).
Figure 1.10 exhibits several liquid metals (from The Reactor Handbook, Vol. Atomic
Energy Commission AECD-3646 U.S. Government Printing Office, Washington D.C.
May 1995 p. 258.)

The General Viscosity Graphs
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Chemical
component

Molecular
Weight

Tc[K] Pc[Bar] µc [N sec
m2 ]

H2 2.016 33.3 12.9696 3.47
He 4.003 5.26 2.289945 2.54
Ne 20.183 44.5 27.256425 15.6
Ar 39.944 151 48.636 26.4
Xe 131.3 289.8 58.7685 49.
Air “mixed” 28.97 132 36.8823 19.3
CO2 44.01 304.2 73.865925 19.0
O2 32.00 154.4 50.358525 18.0
C2H6 30.07 305.4 48.83865 21.0
CH4 16.04 190.7 46.40685 15.9
Water 647.096 K 22.064 [MPa]

Table -1.4. The properties at the critical stage and their values of selected materials.

In case “ordinary” fluids where information is limit, Hougen et al suggested to use
graph similar to compressibility chart. In this graph, if one point is well documented,
other points can be estimated. Furthermore, this graph also shows the trends. In Figure
1.11 the relative viscosity µr = µ/µc is plotted as a function of relative temperature,
Tr. µc is the viscosity at critical condition and µ is the viscosity at any given condition.
The lines of constant relative pressure, Pr = P/Pc are drawn. The lower pressure is,
for practical purpose, ∼ 1[bar].

The critical pressure can be evaluated in the following three ways. The simplest
way is by obtaining the data from Table 1.4 or similar information. The second way, if
the information is available and is close enough to the critical point, then the critical
viscosity is obtained as

µc =

given︷︸︸︷
µ

µr︸︷︷︸
figure 1.11

(1.18)

The third way, when none is available, is by utilizing the following approximation

µc =
√

M Tcṽc
2/3 (1.19)

Where ṽc is the critical molecular volume and M is molecular weight. Or

µc =
√

MPc
2/3Tc

−1/6 (1.20)

Calculate the reduced pressure and the reduced temperature and from the Figure 1.11
obtain the reduced viscosity.

Example 1.4:
Estimate the viscosity of oxygen, O2 at 100◦C and 20[Bar].
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Solution

The critical condition of oxygen are Pc = 50.35[Bar] Tc = 154.4 µc = 18
[

N sec
m2

]
The

value of the reduced temperature is

Tr ∼ 373.15
154.4

∼ 2.41

The value of the reduced pressure is

Pr ∼ 20
50.35

∼ 0.4

From Figure 1.11 it can be obtained µr ∼ 1.2 and the predicted viscosity is

µ = µc

Table︷ ︸︸ ︷(
µ

µc

)
= 18× 1.2 = 21.6[Nsec/m2]

The observed value is 24[N sec/m2]5.
End Solution

Viscosity of Mixtures

In general the viscosity of liquid mixture has to be evaluated experimentally. Even
for homogeneous mixture, there isn’t silver bullet to estimate the viscosity. In this book,
only the mixture of low density gases is discussed for analytical expression. For most
cases, the following Wilke’s correlation for gas at low density provides a result in a
reasonable range.

µmix =
n∑

i=1

xi µi∑n
j=1 xi Φij

(1.21)

where Φij is defined as

Φij =
1√
8

√
1 +

Mi

Mj

(
1 +

√
µi

µj

4

√
Mj

Mi

)2

(1.22)

Here, n is the number of the chemical components in the mixture. xi is the mole
fraction of component i, and µi is the viscosity of component i. The subscript i should
be used for the j index. The dimensionless parameter Φij is equal to one when i = j.
The mixture viscosity is highly nonlinear function of the fractions of the components.

Example 1.5:
Calculate the viscosity of a mixture (air) made of 20% oxygen, O2 and 80% nitrogen
N2 for the temperature of 20◦C.

5Kyama, Makita, Rev. Physical Chemistry Japan Vol. 26 No. 2 1956.
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Fig. -1.11. Reduced viscosity as function of the reduced temperature.

Solution

The following table summarize the known details

i Component
Molecular
Weight, M

Mole
Fraction, x

Viscosity, µ

1 O2 32. 0.2 0.0000203
2 N2 28. 0.8 0.00001754
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Fig. -1.12. Reduced viscosity as function of the reduced temperature.

i j Mi/Mj µi/µj Φij

1 1 1.0 1.0 1.0
2 1.143 1.157 1.0024

2 1 0.875 .86 0.996
2 1.0 1.0 1.0

µmix ∼ 0.2× 0.0000203
0.2× 1.0 + 0.8× 1.0024

+
0.8× 0.00001754

0.2× 0.996 + 0.8× 1.0
∼ 0.0000181

[
N sec

m2

]

The observed value is ∼ 0.0000182
[

N sec
m2

]
.

End Solution
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In very low pressure, in theory, the viscosity is only a function of the temperature
with a “simple” molecular structure. For gases with very long molecular structure or
complexity structure these formulas cannot be applied. For some mixtures of two liquids
it was observed that at a low shear stress, the viscosity is dominated by a liquid with
high viscosity and at high shear stress to be dominated by a liquid with the low viscosity
liquid. The higher viscosity is more dominate at low shear stress. Reiner and Phillippoff
suggested the following formula

dUx

dy
=




1

µ∞ +
µ0 − µ∞

1 +
(

τxy

τs

)2




τxy
(1.23)

Where the term µ∞ is the experimental value at high shear stress. The term µ0

is the experimental viscosity at shear stress approaching zero. The term τs is the
characteristic shear stress of the mixture. An example for values for this formula, for
Molten Sulfur at temperature 120◦C are µ∞ = 0.0215

(
N sec
m2

)
, µ0 = 0.00105

(
N sec
m2

)
,

and τs = 0.0000073
(

kN
m2

)
. This equation (1.23) provides reasonable value only up to

τ = 0.001
(

kN
m2

)
.

Figure 1.12 can be used for a crude estimate of dense gases mixture. To esti-
mate the viscosity of the mixture with n component Hougen and Watson’s method for
pseudocritial properties is adapted. In this method the following are defined as mixed
critical pressure as

Pc
mix

=
n∑

i=1

xiPc
i

(1.24)

the mixed critical temperature is

Tc
mix

=
n∑

i=1

xiTc
i

(1.25)

and the mixed critical viscosity is

µc
mix

=
n∑

i=1

xiµc
i

(1.26)

Example 1.6:
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h

Ui

ri

ro

Fig. -1.13. Concentrating cylin-
ders with the rotating inner cylin-
der.

An inside cylinder with a radius of 0.1 [m]
rotates concentrically within a fixed cylin-
der of 0.101 [m] radius and the cylinders
length is 0.2 [m]. It is given that a mo-
ment of 1 [N × m] is required to main-
tain an angular velocity of 31.4 revolution
per second (these number represent only
academic question not real value of actual
liquid). Estimate the liquid viscosity used
between the cylinders.

Solution

The moment or the torque is transmitted through the liquid to the outer cylinder.
Control volume around the inner cylinder shows that moment is a function of the area
and shear stress. The shear stress calculations can be estimated as a linear between the
two concentric cylinders. The velocity at the inner cylinders surface is

Ui = r ω = 0.1× 31.4[rad/second] = 3.14[m/s] (1.VI.a)

The velocity at the outer cylinder surface is zero. The velocity gradient may be assumed
to be linear, hence,

dU

dr
∼= 0.1− 0

0.101− 0.1
= 100sec−1 (1.VI.b)

The used moment is

M =

A︷ ︸︸ ︷
2 π ri h

τ︷ ︸︸ ︷
µ

dU

dr

`︷︸︸︷
ri

(1.VI.c)

or the viscosity is

µ =
M

2 π ri
2 h

dU

dr

=
1

2× π × 0.12 × 0.2× 100
=

(1.VI.d)

End Solution

Example 1.7:
A square block weighing 1.0 [kN] with a side surfaces area of 0.1 [m2] slides down an
incline surface with an angle of 20◦C. The surface is covered with oil film. The oil
creates a distance between the block and the inclined surface of 1× 10−6[m]. What is
the speed of the block at steady state? Assuming a linear velocity profile in the oil and
that the whole oil is under steady state. The viscosity of the oil is 3× 10−5[m2/sec].

Solution

The shear stress at the surface is estimated for steady state by

τ = µ
dU

dx
= 3× 10−5 × U

1× 10−6
= 30 U (1.VII.a)
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The total fiction force is then

f = τ A = 0.1× 30 U = 3 U (1.VII.b)

The gravity force that acting against the friction is equal to the friction hence

Fg = f = 3 U =⇒ U =
mg sin 20◦

3
(1.VII.c)

Or the solution is

U =
1× 9.8× sin 20◦

3
(1.VII.d)

End Solution

Example 1.8:

δ

rR

Fig. -1.14. Rotating disc in a
steady state.

Develop an expression to estimate of the
torque required to rotate a disc in a narrow
gap. The edge effects can be neglected.
The gap is given and equal to δ and the
rotation speed is ω. The shear stress can
be assumed to be linear.

Solution

In this cases the shear stress is a function of the radius, r and an expression has to be
developed. Additionally, the differential area also increases and is a function of r. The
shear stress can be estimated as

τ ∼= µ
U

δ
= µ

ω r

δ
(1.VIII.a)

This torque can be integrated for the entire area as

T =
∫ R

0

r τ dA =
∫ R

0

`︷︸︸︷
r

τ︷ ︸︸ ︷
µ

ω r

δ

dA︷ ︸︸ ︷
2 π r dr (1.VIII.b)

The results of the integration is

T =
π µ ω R4

2 δ
(1.VIII.c)

End Solution
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1.6 Fluid Properties

The fluids have many properties which are similar to solid. A discussion of viscosity
and surface tension should be part of this section but because special importance these
topics have separate sections. The rest of the properties lumped into this section.

1.6.1 Fluid Density
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Fig. -1.15. Water density as a function of temperature for various pressure. This figure
illustrates the typical situations like the one that appear in Example 1.9

The density is a property that is simple to analyzed and understand. The density
is related to the other state properties such temperature and pressure through the
equation of state or similar. Examples to describe the usage of property are provided.

Example 1.9:
A steel tank filled with water undergoes heating from 10◦C to 50◦C. The initial pressure
can be assumed to atmospheric. Due to the change temperature the tank, (strong steel
structure) undergoes linear expansion of 8× 10−6per ◦C. Calculate the pressure at the
end of the process. E denotes the Young’s modulus6. Assume that the Young modulus
of the water is 2.15× 109(N/m2)7. State your assumptions.

Solution

6The definition of Young’s modulus is E = σ
ε

where in this case σ can be estimated as the pressure
change. The definition of ε is the ratio length change to to total length ∆L/L.

7This value is actually of Bulk modulus.
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The expansion of the steel tank will be due to two contributions: one due to the
thermal expansion and one due to the pressure increase in the tank. For this example,
it is assumed that the expansion due to pressure change is negligible. The tank volume
change under the assumptions state here but in the same time the tank walls remain
straight. The new density is

ρ2 =
ρ1

(1 + α∆ T )3︸ ︷︷ ︸
thermal expansion

(1.IX.a)

The more accurate calculations require looking into the steam tables. As estimated
value of the density using Young’s modulus and V2 ∝ (L2)

38.

ρ2 ∝ 1
(L2)

3 =⇒ ρ2
∼= m(

L1

(
1− ∆P

E

))3 (1.IX.b)

It can be noticed that ρ1
∼= m/L1

3 and thus

ρ1

(1 + α∆ T )3
=

ρ1(
1− ∆P

E

)3
(1.IX.c)

The change is then

1 + α∆ T = 1− ∆P

E
(1.IX.d)

Thus the final pressure is
P2 = P1 − E α ∆ T (1.IX.e)

In this case, what happen when the value of P1 − E α ∆ T becomes negative or very
very small? The basic assumption falls and the water evaporates.

If the expansion of the water is taken into account then the change (increase) of
water volume has to be taken into account. The tank volume was calculated earlier
and since the claim of “strong” steel the volume of the tank is only effected by the
temperature.

V2

V1

∣∣∣∣
tank

= (1 + α∆T )3 (1.IX.f)

The volume of the water undergoes also a change and is a function of the temperature
and pressure. The water pressure at the end of the process is unknown but the volume
is known. Thus, the density at end is also known

ρ2 =
mw

T2|tank
(1.IX.g)

The pressure is a function volume and the temperature P = P (v, T ) thus

dP =

∼βv︷ ︸︸ ︷(
∂P

∂v

)
dv +

∼E︷ ︸︸ ︷(
∂P

∂T

)
dT

(1.IX.h)

8This leads E (L2 − L1) = ∆P L1. Thus, L2 = L1 (1−∆P/E)
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As approximation it can written as

∆P = βv ∆v + E ∆T (1.IX.i)

Substituting the values results for

∆P =
0.0002

∆ρ
+ 2.15× 109 ∆T (1.IX.j)

Notice that density change, ∆ρ < 0.
End Solution

1.6.2 Bulk Modulus

Similar to solids (hook’s law), liquids have a property that describes the volume change
as results of pressure change for constant temperature. It can be noted that this property
is not the result of the equation of state but related to it. Bulk modulus is usually
obtained from experimental or theoretical or semi theoretical (theory with experimental
work) to fit energy–volume data. Most (theoretical) studies are obtained by uniformly
changing the unit cells in global energy variations especially for isotropic systems (
where the molecules has a structure with cubic symmetries). The bulk modulus is a
measure of the energy can be stored in the liquid. This coefficient is analogous to the
coefficient of spring. The reason that liquid has different coefficient is because it is
three dimensional verse one dimension that appear in regular spring.

The bulk modulus is defined as

BT = −v

(
∂P

∂v

)

T

(1.27)

Using the identity of v = 1/ρ transfers equation (1.27) into

BT = ρ

(
∂P

∂ρ

)

T

(1.28)

The bulk modulus for several selected liquids is presented in Table 1.5.

Table -1.5. The bulk modulus for selected material with the critical temperature and pressure
na −→ not available and nf −→ not found (exist but was not found in the literature).

Chemical
component

Bulk
Modulus
109 N

m

Tc Pc

Acetic Acid 2.49 593K 57.8 [Bar]

Acetone 0.80 508 K 48 [Bar]
Benzene 1.10 562 K 4.74 [MPa]
Carbon Tetrachloride 1.32 556.4 K 4.49 [MPa]
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Table -1.5. Bulk modulus for selected materials (continue)

Chemical
component

Bulk
Modulus
109 N

m

Tc Pc

Ethyl Alcohol 1.06 514 K 6.3 [Mpa]
Gasoline 1.3 nf nf
Glycerol 4.03-4.52 850 K 7.5 [Bar]
Mercury 26.2-28.5 1750 K 172.00 [MPa]
Methyl Alcohol 0.97 Est 513 Est 78.5 [Bar]
Nitrobenzene 2.20 nf nf
Olive Oil 1.60 nf nf
Paraffin Oil 1.62 nf nf
SAE 30 Oil 1.5 na na
Seawater 2.34 na na
Toluene 1.09 591.79 K 4.109 [MPa]
Turpentine 1.28 na na
Water 2.15-2.174 647.096 K 22.064 [MPa]

In the literature, additional expansions for similar parameters are defined. The
thermal expansion is defined as

βP =
1
v

(
∂v

∂T

)

P

(1.29)

This parameter indicates the change of volume due to temperature change when the
pressure is constant. Another definition is referred as coefficient of tension and it is
defined as

βv =
1
P

(
∂P

∂T

)

v

(1.30)

This parameter indicates the change of the pressure due to the change of temperature
(where v = constant). These definitions are related to each other. This relationship
is obtained by the observation that the pressure as a function of the temperature and
specific volume as

P = f(T, v) (1.31)

The full pressure derivative is

dP =
(

∂P

∂T

)

v

dT +
(

∂P

∂v

)

T

dv (1.32)

On constant pressure lines, dP = 0, and therefore equation (1.32) reduces

0 =
(

∂P

∂T

)

v

dT +
(

∂P

∂v

)

T

dv (1.33)
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From equation (1.33) follows that

dv

dT

∣∣∣∣
P=const

= −

(
∂P

∂T

)

v(
∂P

∂v

)

T

(1.34)

Equation (1.34) indicates that relationship for these three coefficients is

βT = − βv

βP
(1.35)

The last equation (1.35) sometimes is used in measurement of the bulk modulus.
The increase of the pressure increases the bulk modulus due to the molecules

increase of the rejecting forces between each other when they are closer. In contrast, the
temperature increase results in reduction of the bulk of modulus because the molecular
are further away.

Example 1.10:
Calculate the modulus of liquid elasticity that reduced 0.035 per cent of its volume by
applying a pressure of 5[Bar] in a s slow process.

Solution

Using the definition for the bulk modulus

βT = −v
∂P

∂v
' v

∆v
∆P =

5
0.00035

' 14285.714[Bar]

End Solution

Example 1.11:
Calculate the pressure needed to apply on water to reduce its volume by 1 per cent.
Assume the temperature to be 20◦C.

Solution

Using the definition for the bulk modulus

∆P ∼ βT
∆v

v
∼ 2.15 109.01 = 2.15 107[N/m2] = 215[Bar]

End Solution

Example 1.12:
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h1

h2

Oil (liquid 1)

Water (liquid 2)

air (or gas)

Fig. -1.16. Two liquid layers under
pressure.

Two layers of two different liquids are con-
tained in a very solid tank. Initially the
pressure in the tank is P0. The liquids are
compressed due to the pressure increases.
The new pressure is P1. The area of the
tank is A and liquid A height is h1 and liq-
uid B height is h2. Estimate the change
of the heights of the liquids depicted in the
Figure 1.16. State your assumptions.

Solution

The volume change in a liquid is

BT
∼= ∆P

∆V/V
(1.XII.a)

Hence the change for the any liquid is

∆h =
∆P

A BT /V
=

h∆P

BT
(1.XII.b)

The total change when the hydrostatic pressure is ignored.

∆h1+2 = ∆P

(
h1

BT 1

+
h2

BT 2

)
(1.XII.c)

End Solution

Example 1.13:
In the Internet the following problem ( here with LATEX modification) was posted which
related to Pushka equation.

A cylindrical steel pressure vessel with volume 1.31 m3 is to be tested. The vessel
is entirely filled with water, then a piston at one end of the cylinder is pushed in until
the pressure inside the vessel has increased by 1000 kPa. Suddenly, a safety plug on the
top bursts. How many liters of water come out?

Relevant equations and data suggested by the user were: BT = 0.2×1010N/m2,
P1 = P0 + ρ g h, P1 = −BT ∆V/V

with the suggested solution of
“I am assuming that I have to look for ∆V as that would be the water that comes

out causing the change in volume.”

∆V =
−V ∆P

BT
= −1.31(1000)/(0.2× 1010)∆V = 6.55 ∗ 10−7

Another user suggest that:
We are supposed to use the bulk modulus from our textbook, and that one is 0.2×1010.
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Anything else would give a wrong answer in the system. So with this bulk modulus, is
0.655L right?

In this post several assumptions were made. What is a better way to solve this
problem.

Solution

It is assumed that this process can be between two extremes: one isothermal and one
isentropic. The assumption of isentropic process is applicable after a shock wave that
travel in the tank. If the shock wave is ignored (too advance material for this book9.),
the process is isentropic. The process involve some thermodynamics identities to be
connected. Since the pressure is related or a function of density and temperature it
follows that

P = P (ρ, T ) (1.XIII.a)

Hence the full differential is

dP =
∂P

∂ρ

∣∣∣∣
T

dρ +
∂P

∂T

∣∣∣∣
ρ

dT (1.XIII.b)

Equation (1.XIII.b) can be multiplied by ρ/P to be

ρ dP

P
=

1
P




BT︷ ︸︸ ︷
ρ

∂P

∂ρ

∣∣∣∣
T

dρ


 + ρ




βv︷ ︸︸ ︷
1
P

∂P

∂T

∣∣∣∣
ρ

dT


 (1.XIII.c)

The definitions that were provided before can be used to write

ρ dP

P
=

1
P

BT dρ + ρ βv dT (1.XIII.d)

The infinitesimal change of density will be then

1
P

BT dρ =
ρ dP

P
− ρ βv dT (1.XIII.e)

or

dρ =
ρ dP

BT
− ρP βv dT

BT
(1.XIII.f)

Thus, the calculation that were provide on line need to have corrections by subtracting
the second terms.

End Solution

9The shock wave velocity is related to square of elasticity of the water. Thus the characteristic time
for the shock is S/c when S is a typical dimension of the tank and c is speed of sound of the water in
the tank.
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Example 1.14:
The hydrostatic pressure was neglected in example 1.12. In some places the ocean depth
is many kilometers (the deepest places is more than 10 kilometers). For this example,
calculate the density change in the bottom of 10 kilometers using two methods. In one
method assume that the density is remain constant until the bottom. In the second
method assume that the density is a function of the pressure.

Solution

For the the first method the density is

BT
∼= ∆P

∆V/V
=⇒ ∆V = V

∆P

BT
(1.XIV.a)

The density at the surface is ρ = m/V and the density at point x from the surface the
density is

ρ(x) =
m

V −∆V
=⇒ ρ(x) =

m

V − V
∆P

BT

(1.XIV.b)

In the Chapter on static it will be shown that the change pressure is

∆P = g

∫ x

0

ρ(x)dx (1.XIV.c)

Combining equation (1.XIV.b) with equation (1.XIV.c) yields

ρ(x) =
m

V − V

g

∫ x

0

ρ(x)dx

BT

(1.XIV.d)

Equation can be rearranged to be

ρ(x) =
m

V

(
1− g

BT

∫ x

0

ρ(x)dx

) =⇒ ρ(x) =
ρ0(

1− g

BT

∫ x

0

ρ(x)dx

)
(1.XIV.e)

Equation (1.XIV.e) is an integral equation which is discussed in the appendix10. . It is
convenient to change further equation (1.XIV.e) to

1− g

BT

∫ x

0

ρ(x)dx =
ρ0

ρ(x)
(1.XIV.f)

The integral equation (1.XIV.f) can be converted to differential equation when the two
sides under differentiation

g

BT
ρ(x) +

ρ0

ρ(x)2
d ρ(x)

dx
= 0 (1.XIV.g)

10Under construction
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or
g ρ(x)3

BT ρ0
+

d ρ(x)
dx

= 0 (1.XIV.h)

The solution is
ρ0 BT

2 g ρ2
= x + c (1.XIV.i)

or rearranged as

ρ =

√
ρ0 BT

2 g (x + c)
(1.XIV.j)

The integration constant can be found by the fact that the density at the x = 0 is ρ0

ρ0 =

√
ρ0 BT

2 g (c)
=⇒ c =

BT

2 g ρ0

(1.XIV.k)

Substituting the integration constant, the solution is

ρ

ρ0
=

√
ρ0 BT

2 g ρ0 x + BT

(1.XIV.l)

In the “constant” density approach, the density at the bottom using equation (1.XIV.e)
was

ρ =
ρ0

1− g

BT
g ρ0 x

=⇒ ρ0 BT

BT − g ρ0 x (1.XIV.m)

End Solution

Advance material can be skipped

Example 1.15:
Water in deep sea undergoes compression due to hydrostatic pressure. That is the den-
sity is function of the depth. For constant bulk modulus, it was shown in “Fundamentals
of Compressible Flow” by this author that the speed of sound is

c =

√
BT

ρ
(1.XV.a)

Calculate the time it take for a sound wave to propagate perpendicularly to the surface
to a depth D (perpendicular to the straight surface). Assume that no variation of the
temperature. For the purpose of this exercise, the salinity can be completely ignored.

Solution

The equation for the sound speed is taken here as correct for very local point. However,
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the density is different for every point since the density varies and the density is a
function of the depth. The speed of sound at any depth point, x, is

c =

√√√√√
BT

ρ0 BT

BT − g ρ0 x

=

√
BT − g ρ0 x

ρ0 (1.XV.b)

The time the sound travel a small interval distance, dx is

dτ =
dx√

BT − g ρ0 x

ρ0

(1.XV.c)

The time takes for the sound the travel the whole distance is the integration of in-
finitesimal time

t =

-
-

D

0

dx√
BT − g ρ0 x

ρ0

(1.XV.d)

The solution of equation (1.XV.d) is

t =
√

ρ0

(
2

√
BT − 2

√
BT −D

)
(1.XV.e)

The time to travel according to the standard procedure is

t =
D√
BT

ρ0

=
D
√

ρ0√
BT (1.XV.f)

The ratio between the corrected estimated to the standard calculation is

correction ratio =
√

ρ0

(
2
√

BT − 2
√

BT −D
)

D
√

ρ0√
BT

(1.XV.g)

End Solution

1.6.2.1 Bulk Modulus of Mixtures

In the discussion above it was assumed that the liquid is pure. In this short section a
discussion about the bulk modulus averaged is presented. When more than one liquid
are exposed to pressure the value of these two (or more liquids) can have to be added
in special way. The definition of the bulk modulus is given by equation (1.27) or (1.28)
and can be written (where the partial derivative can looks as delta ∆ as

∂V =
V ∂P

BT

∼= V ∆P

BT
(1.36)
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The total change is compromised by the change of individual liquids or phases if two
materials are present. Even in some cases of emulsion (a suspension of small globules
of one liquid in a second liquid with which the first will not mix) the total change is the
summation of the individuals change. In case the total change isn’t, in special mixture,
another approach with taking into account the energy-volume is needed. Thus, the
total change is

∂V = ∂V1 + ∂V2 + · · · ∂Vi
∼= ∆V1 + ∆V2 + · · ·∆Vi (1.37)

Substituting equation (1.36) into equation (1.37) results in

∂V =
V1 ∂P

BT 1

+
V2 ∂P

BT 2

+ · · ·+ Vi ∂P

BT i

∼= V1 ∆P

BT 1

+
V2 ∆P

BT 2

+ · · ·+ Vi ∆P

BT i

(1.38)

Under the main assumption in this model the total volume is comprised of the individual
volume hence,

V = x1 V + x1 V + · · ·+ xi V (1.39)

Where x1, x2 and xi are the fraction volume such as xi = Vi/V . Hence, using this
identity and the fact that the pressure is change for all the phase uniformly equation
(1.39) can be written as

∂V = V ∂P

(
x1

BT 1

+
x2

BT 2

+ · · ·+ xi

BT i

)
∼= V ∆P

(
x1

BT 1

+
x2

BT 2

+ · · ·+ xi

BT i

)

(1.40)

Rearranging equation (1.40) yields

v
∂P

∂v
∼= v

∆P

∆v
=

1(
x1

BT 1

+
x2

BT 2

+ · · ·+ xi

BT i

) (1.41)

Equation (1.41) suggested an averaged new bulk modulus

BT mix =
1(

x1

BT 1

+
x2

BT 2

+ · · ·+ xi

BT i

) (1.42)

In that case the equation for mixture can be written as

v
∂P

∂v
= BT mix (1.43)

11

End Advance material

11To be added in the future the effect of change of chemical composition on bulk modulus.
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1.6.2.2 When the Bulk Modulus is Important? and Hydraulics System

There are only several situations in which the bulk modulus is important. These sit-
uations include hydraulic systems, deep ocean (on several occasions), geology system
like the Earth, Cosmology. The Pushka equation normally can address the situations
in deep ocean and geological system. This author is not aware of any special issues
that involve in Cosmology as opposed to geological system. The only issue that was
not address is the effect on hydraulic systems. The hydraulic system normally refers
to system in which a liquid is used to transmit forces (pressure) for surface of moving
object (normally piston) to another. For theoretical or hypothetical liquids which mov-
ing one object (surface) results in movement of the other object under the condition
that liquid volume is fix. when the liquid volume or density is function of the pressure
(and temperature due the friction) the movement of the other object is unpredictable.
For very accurate and rapid systems, the temperature and pressure varies during the
operation. In practical situations, the commercial hydraulic fluid can change due to
friction by 50◦C. The bulk modulus for the same liquid change by more 60%. The
change of the bulk modulus by this amount can change the response time significantly.

1.7 Surface Tension

dℓ1

dℓ2

x

y

2dβ2

2dβ1

R1

R2

Fig. -1.17. Surface tension control volume analysis de-
scribing principles radii.

The surface tension manifested it-
self by a rise or depression of the
liquid at the free surface edge.
Surface tension is also responsi-
ble for the creation of the drops
and bubbles. It also responsi-
ble for the breakage of a liquid
jet into other medium/phase to
many drops (atomization). The
surface tension is force per length
and is measured by [N/m] and is
acting to stretch the surface.

Surface tension results from
a sharp change in the density be-
tween two adjoined phases or ma-
terials. There is a common mis-
conception for the source of the surface tension. In many (physics, surface tension, and
fluid mechanics) books explained that the surface tension is a result from unbalance
molecular cohesive forces. This explanation is wrong since it is in conflict with Newton’s
second law (see example ?). This erroneous explanation can be traced to Adam’s book
but earlier source may be found.

The relationship between the surface tension and the pressure on the two sides
of the surface is based on geometry. Consider a small element of surface. The pressure
on one side is Pi and the pressure on the other side is Po. When the surface tension
is constant, the horizontal forces cancel each other because symmetry. In the vertical
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direction, the surface tension forces are puling the surface upward. Thus, the pressure
difference has to balance the surface tension. The forces in the vertical direction reads

(Pi − Po) d`1 d`2 = ∆ Pd`1 d`2 = 2 σd`1 sin β1 + 2 σd`2 sin β2 (1.44)

For a very small area, the angles are very small and thus (sinβ ∼ β). Furthermore,
it can be noticed that d`i ∼ 2 Ri dβi. Thus, the equation (1.44) can be simplified as

∆ P = σ

(
1

R1
+

1
R2

)
(1.45)

Equation (1.45) predicts that pressure difference increase with inverse of the radius.
There are two extreme cases: one) radius of infinite and radius of finite size. The second
with two equal radii. The first case is for an infinite long cylinder for which the equation
(1.45) is reduced to

∆ P = σ

(
1
R

)
(1.46)

Other extreme is for a sphere for which the main radii are the same and equation (1.45)
is reduced to

∆ P =
2 σ

R
(1.47)

Where R is the radius of the sphere. A soap bubble is made of two layers, inner and
outer, thus the pressure inside the bubble is

∆ P =
4 σ

R
(1.48)

Example 1.16:
A glass tube is inserted into bath of mercury. It was observed that contact angle between
the glass and mercury is 55◦C.
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55◦

55◦

0.025[m]

0.02[m]
h

σ

P = ρ h g

Fig. -1.18. Glass tube inserted into mercury.

The inner diameter is 0.02[m] and
the outer diameter is 0.021[m]. Es-
timate the force due to the surface
tension (tube is depicted in Figure
1.18). It can be assume that the
contact angle is the same for the
inside and outside part of the tube.
Estimate the depression size. As-
sume that the surface tension for
this combination of material is 0.5
[N/m]

Solution

The mercury as free body that several forces act on it.

F = σ2 π cos 55◦C(Di + Do) (1.XVI.a)

This force is upward and the horizontal force almost canceled. However, if the inside
and the outside diameters are considerable different the results is

F = σ2 π sin 55◦C(Do −Do) (1.XVI.b)

The balance of the forces on the meniscus show under the magnified glass are

P

A︷︸︸︷
π r2 = σ 2 π r + ½½>

∼ 0
W

(1.XVI.c)

or

g ρ h π r2 = σ 2 π r + ½½>
∼ 0

W (1.XVI.d)

Or after simplification

h =
2 σ

g ρ r
(1.XVI.e)

End Solution

Example 1.17:
A Tank filled with liquid, which contains n bubbles with equal radii, r. Calculate the
minimum work required to increase the pressure in tank by ∆P . Assume that the liquid
bulk modulus is infinity.

Solution

The work is due to the change of the bubbles volume. The work is

w =
∫ rf

r0

∆P (v)dv (1.49)
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The minimum work will be for a reversible process. The reversible process requires very
slow compression. It is worth noting that for very slow process, the temperature must
remain constant due to heat transfer. The relationship between pressure difference and
the radius is described by equation (1.47) for reversible process. Hence the work is

w =
∫ rf

r0

∆P︷︸︸︷
2 σ

r

dv︷ ︸︸ ︷
4 π r2 dr = 8 π σ

∫ rf

r0

rdr = 4 π σ
(
rf

2 − r0
2
)

(1.50)

Where, r0 is the radius at the initial stage and rf is the radius at the final stage.
The work for n bubbles is then 4 π σ n

(
rf

2 − r0
2
)
. It can be noticed that the

work is negative, that is the work is done on the system.
End Solution

Example 1.18:

ℓ

h

Fig. -1.19. Capillary rise between
two plates.

Calculate the rise of liquid between two di-
mensional parallel plates shown in Figure
1.19. Notice that previously a rise for cir-
cular tube was developed which different
from simple one dimensional case. The
distance between the two plates is ` and
the and surface tension is σ. Assume that
the contact angle is 0circ (the maximum
possible force). Compute the value for sur-
face tension of 0.05[N/m], the density 1000[kg/m3]
and distance between the plates of 0.001[m].

Solution

In Figure 1.19 exhibits the liquid under the current study. The vertical forces acting on
the body are the gravity, the pressure above and below and surface tension. It can be
noted that the pressure and above are the same with the exception of the curvature on
the upper part. Thus, the control volume is taken just above the liquid and the air part
is neglected. The question when the curvature should be answered in the Dimensional
analysis and for simplification this effect is neglected. The net forces in the vertical
direction (positive upwards) per unit length are

2σ cos 0◦ = g h ` ρ =⇒ h =
2 σ

` ρ g
(1.51)

Inserting the values into equation (1.51) results in

h =
2× 0.05

0.001× 9.8××1000
= (1.52)
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End Solution

Example 1.19:
Develop expression for rise of the liquid due to surface tension in concentric cylinders.

Solution

The difference lie in the fact that “missing”cylinder add additional force and reduce the
amount of liquid that has to raise. The balance between gravity and surface tension is

σ 2 π (ri cos θi + ro cos θo) = ρ g h
(
π(ro)2 − π(ri)2

)
(1.XIX.a)

Which can be simplified as

h =
2 σ (ri cos θi + ro cos θo)

ρ g ((ro)2 − (ri)2)
(1.XIX.b)

The maximum is obtained when cos θi = cos θo = 1. Thus, equation (1.XIX.b) can be
simplified

h =
2 σ

ρ g (ro − ri)
(1.XIX.c)

End Solution

1.7.1 Wetting of Surfaces

S L

G

Fig. -1.20. Forces in Contact angle.

To explain the source of the contact angle, con-
sider the point where three phases became in con-
tact. This contact point occurs due to free surface
reaching a solid boundary. The surface tension
occurs between gas phase (G) to liquid phase (L)
and also occurs between the solid (S) and the liq-
uid phases as well as between the gas phase and
the solid phase. In Figure 1.20, forces diagram is
shown when control volume is chosen so that the masses of the solid, liquid, and gas
can be ignored. Regardless to the magnitude of the surface tensions (except to zero)
the forces cannot be balanced for the description of straight lines. For example, forces
balanced along the line of solid boundary is

σgs − σls − σlg cos β = 0 (1.53)

and in the tangent direction to the solid line the forces balance is

Fsolid = σlg sinβ (1.54)
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substituting equation (1.54) into equation (1.53) yields

σgs − σls =
Fsolid

tan β
(1.55)

For β = π/2 =⇒ tanβ = ∞. Thus, the solid reaction force must be zero. The gas
solid surface tension is different from the liquid solid surface tension and hence violating
equation (1.53).

NonWetting
fluidWetting

fluid

Fig. -1.21. Description of wetting and
non–wetting fluids.

The surface tension forces must be bal-
anced, thus, a contact angle is created to bal-
ance it. The contact angle is determined by
whether the surface tension between the gas
solid (gs) is larger or smaller then the surface
tension of liquid solid (ls) and the local geom-
etry. It must be noted that the solid boundary
isn’t straight. The surface tension is a molec-
ular phenomenon, thus depend on the locale
structure of the surface and it provides the balance for these local structures.

The connection of the three phases–materials–mediums creates two situations
which are categorized as wetting or non–wetting. There is a common definition of
wetting the surface. If the angle of the contact between three materials is larger than
90◦ then it is non-wetting. On the other hand, if the angle is below than 90◦ the material
is wetting the surface (see Figure 1.21). The angle is determined by properties of the
liquid, gas medium and the solid surface. And a small change on the solid surface can
change the wetting condition to non–wetting. In fact there are commercial sprays that
are intent to change the surface from wetting to non wetting. This fact is the reason
that no reliable data can be provided with the exception to pure substances and perfect
geometries. For example, water is described in many books as a wetting fluid. This
statement is correct in most cases, however, when solid surface is made or cotted with
certain materials, the water is changed to be wetting (for example 3M selling product
to “change” water to non–wetting). So, the wetness of fluids is a function of the solid
as well.

Table -1.6. The contact angle for air, distilled water with selected materials to demonstrate
the inconsistency.

Chemical
component

Contact
Angle

Source

Steel π/3.7 [1]

Steel,Nickel π/4.74 [2]

Nickel π/4.74 to π/3.83 [1]

Nickel π/4.76 to π/3.83 [3]

Chrome-Nickel Steel π/3.7 [4]

Continued on next page
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Table -1.6. The contact angle for air, distilled water with selected materials to demonstrate
the inconsistency. (continue)

Chemical
component

Contact
Angle mN

m
Source

Silver π/6 to π/4.5 [5]

Zink π/3.4 [4]

Bronze π/3.2 [4]

Copper π/4 [4]

Copper π/3 [7]

Copper π/2 [8]

1 R. Siegel, E. G. Keshock (1975) “Effects of reduced gravity on nucleate boiling bubble
dynamics in saturated water,” AIChE Journal Volume 10 Issue 4, Pages 509 - 517.
1975

2 Bergles A. E. and Rohsenow W. M. ”The determination of forced convection surface–
boiling heat transfer, ASME, J. Heat Transfer, vol 1 pp 365 - 372.

3 Tolubinsky, V.I. and Ostrovsky, Y.N. (1966) “On the mechanism of boiling heat
transfer”,. International Journal of Heat and Mass Transfer, Vol. 9, No 12, pages
1465-1470.

4 Arefeva E.I., Aladev O, I.T., (1958) “wlijanii smatchivaemosti na teploobmen pri
kipenii,” Injenerno Fizitcheskij Jurnal, 11-17 1(7) In Russian.

5 Labuntsov D. A. (1939) “Approximate theory of heat transfer by developed nucleate
boiling” In Sussian Izvestiya An SSSR , Energetika I transport, No 1.

6 Basu, N., Warrier, G. R., and Dhir, V. K., (2002) “Onset of Nucleate Boiling and
Active Nucleation Site Density during Subcooled Flow Boiling,” ASME Journal of
Heat Transfer, Vol. 124, papes 717 -728.

7 Gaetner, R. F., and Westwater, J. W., (1960) “Population of Active Sites in Nucleate
Boiling Heat Transfer,” Chem. Eng. Prog. Symp., Ser. 56.

8 Wang, C. H., and Dhir, V. K., (1993), “Effect of Surface Wettability on Active
Nucleation Site Density During Pool Boiling of Water on a Vertical Surface,” J. Heat
Transfer 115, pp. 659-669

To explain the contour of the surface, and the contact angle consider simple
“wetting” liquid contacting a solid material in two–dimensional shape as depicted in
Figure 1.22. To solve the shape of the liquid surface, the pressure difference between
the two sides of free surface has to be balanced by the surface tension. In Figure 1.22
describes the raising of the liquid as results of the surface tension. The surface tension
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h P0

P0

P0

Fig. -1.22. Description of the liquid surface.

reduces the pressure in the liquid above
the liquid line (the dotted line in the Fig-
ure 1.22). The pressure just below the
surface is −g h(x) ρ (this pressure differ-
ence will be explained in more details in
Chapter 4). The pressure, on the gas
side, is the atmospheric pressure. This
problem is a two dimensional problem
and equation (1.46) is applicable to it.
Appalling equation (1.46) and using the
pressure difference yields

g h(x), ρ =
σ

R(x)
(1.56)

The radius of any continuous function, h = h(x), is

R(x) =

(
1 +

[
ḣ(x)

]2
)3/2

ḧ(x)
(1.57)

Where ḣ is the derivative of h with respect to x.
Equation (1.57) can be derived either by forcing a circle at three points at (x, x+dx,
and x+2dx) and thus finding the the diameter or by geometrical analysis of triangles
build on points x and x+dx (perpendicular to the tangent at these points). Substituting
equation (1.57) into equation (1.56) yields

g h(x) ρ =
σ

(
1 +

[
ḣ(x)

]2
)3/2

ḧ(x)

(1.58)

Equation (1.58) is non–linear differential equation for height and can be written as

g h ρ

σ

(
1 +

[
dh

dx

]2
)3/2

− d2h

dx2
= 0

1-D Surface Due to Surface Tension

(1.59)

With the boundary conditions that specify either the derivative ḣ(x = r) = 0 (symme-
try) and the derivative at ḣx = β or heights in two points or other combinations. An
alternative presentation of equation (1.58) is

g h ρ =
σḧ

(
1 + ḣ2

)3/2
(1.60)
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Integrating equation (1.60) transforms into

∫
g ρ

σ
h dh =

∫
ḧ

(
1 + ḣ2

)3/2
dh (1.61)

The constant Lpσ/ρ g is referred to as Laplace’s capillarity constant. The units of this
constant are meter squared. The differential dh is ḣ. Using dummy variable and the
identities ḣ = ξ and hence, ḧ = ξ̇ = dξ transforms equation (1.61) into

∫
1

Lp
h dh =

∫
ξdξ

(1 + ξ2)3/2
(1.62)

After the integration equation (1.62) becomes

h2

2 Lp
+ constant = − 1

(
1 + ḣ2

)1/2
(1.63)

At infinity, the height and the derivative of the height must by zero so constant+0 =
−1/1 and hence, constant = −1 .

1− h2

2 Lp
=

1
(
1 + ḣ2

)1/2
(1.64)

Equation (1.64) is a first order differential equation that can be solved by variables
separation12. Equation (1.64) can be rearranged to be

(
1 + ḣ2

)1/2

=
1

1− h2

2 Lp

(1.65)

Squaring both sides and moving the one to the right side yields

ḣ2 =

(
1

1− h2

2 Lp

)2

− 1 (1.66)

The last stage of the separation is taking the square root of both sides to be

ḣ =
dh

dx
=

√√√√
(

1
1− h2

2 Lp

)2

− 1 (1.67)

12This equation has an analytical solution which is x = Lp
p

4− (h/Lp)2 − Lp acosh(2 Lp/h) +
constant where Lp is the Laplace constant. Shamefully, this author doesn’t know how to show it in a
two lines derivations.



42 CHAPTER 1. INTRODUCTION TO FLUID MECHANICS

or

dh√√√√
(

1
1− h2

2 Lp

)2

− 1

= dx (1.68)

Equation (1.68) can be integrated to yield
-
-

dh√√√√
(

1
1− h2

2 Lp

)2

− 1

= x + constant
(1.69)

The constant is determined by the boundary condition at x = 0. For example if
h(x − 0) = h0 then constant = h0. This equation is studied extensively in classes on
surface tension. Furthermore, this equation describes the dimensionless parameter that
affects this phenomenon and this parameter will be studied in Chapter ?. This book is
introductory, therefore this discussion on surface tension equation will be limited.

1.7.1.1 Capillarity

The capillary forces referred to the fact that surface tension causes liquid to rise or
penetrate into area (volume), otherwise it will not be there. It can be shown that the
height that the liquid raised in a tube due to the surface tension is

h =
2 σ cosβ

g ∆ρ r
(1.70)

Where ∆ρ is the difference of liquid density to the gas density and r is the radius of
tube.

R

h

0
actual

Theory
{working

range

Fig. -1.23. The raising height as a
function of the radii.

But this simplistic equation is unusable and useless
unless the contact angle (assuming that the contact
angel is constant or a repressive average can be found
or provided or can be measured) is given. However,
in reality there is no readily information for contact
angle13 and therefore this equation is useful to show
the treads. The maximum that the contact angle can
be obtained in equation (1.70) when β = 0 and thus
cos β = 1. This angle is obtained when a perfect
half a sphere shape exist of the liquid surface. In
that case equation (1.70) becomes

hmax =
2 σ

g ∆ρ r
(1.71)

13Actually, there are information about the contact angle. However, that information conflict each
other and no real information is available see Table 1.6.
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Fig. -1.24. The raising height as a
function of the radius.

Figure 1.24 exhibits the height as a function of the
radius of the tube. The height based on equation
(1.71) is shown in Figure 1.23 as blue line. The actual
height is shown in the red line. Equation (1.71) pro-
vides reasonable results only in a certain range. For
a small tube radius, equation (1.59) proved better
results because the curve approaches hemispherical
sphere (small gravity effect). For large radii equa-
tion (1.59) approaches the strait line (the liquid line)
strong gravity effect. On the other hand, for ex-
tremely small radii equation (1.71) indicates that the
high height which indicates a negative pressure. The liquid at a certain pressure will
be vaporized and will breakdown the model upon this equation was constructed. Fur-
thermore, the small scale indicates that the simplistic and continuous approach is not
appropriate and a different model is needed. The conclusion of this discussion are shown
in Figure 1.23. The actual dimension for many liquids (even water) is about 1-5 [mm].
The discussion above was referred to “wetting” contact angle. The depression of the
liquid occurs in a “negative” contact angle similarly to “wetting.” The depression height,
h is similar to equation (1.71) with a minus sign. However, the gravity is working against
the surface tension and reducing the range and quality of the predictions of equation
(1.71). The measurements of the height of distilled water and mercury are presented in
Figure 1.24. The experimental results of these materials are with agreement with the
discussion above.
The surface tension of a selected material is given in Table 1.7.
In conclusion, the surface tension issue is important only in case where the radius is
very small and gravity is negligible. The surface tension depends on the two materials
or mediums that it separates.

Example 1.20:
Calculate the diameter of a water droplet to attain pressure difference of 1000[N/m2].
You can assume that temperature is 20◦C.

Solution

The pressure inside the droplet is given by equation (1.47).

D = 2 R =
22 σ

∆P
=

4× 0.0728
1000

∼ 2.912 10−4[m]

End Solution

Example 1.21:
Calculate the pressure difference between a droplet of water at 20◦C when the droplet
has a diameter of 0.02 cm.

Solution
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using equation

∆P =
2 σ

r
∼ 2× 0.0728

0.0002
∼ 728.0[N/m2]

End Solution

Example 1.22:
Calculate the maximum force necessary to lift a thin wire ring of 0.04[m] diameter from
a water surface at 20◦C. Neglect the weight of the ring.

Solution

F = 2(2 π r σ) cos β

The actual force is unknown since the contact angle is unknown. However, the maximum
Force is obtained when β = 0 and thus cosβ = 1. Therefore,

F = 4 π r σ = 4× π × 0.04× 0.0728 ∼ .0366[N ]

In this value the gravity is not accounted for.
End Solution

Example 1.23:
A small liquid drop is surrounded with the air and has a diameter of 0.001 [m]. the
pressure difference between the inside and outside droplet is 1[kPa]. Estimate the surface
tension?

Solution

To be continue
End Solution

Table -1.7. The surface tension for selected materials at temperature 20◦C when not men-
tioned.

Chemical
component

Surface
Tension
mN
m

T
correction
mN
m K

Acetic Acid 27.6 20◦C n/a
Acetone 25.20 - -0.1120
Aniline 43.4 22◦C -0.1085
Benzene 28.88 - -0.1291
Benzylalcohol 39.00 - -0.0920

Continued on next page
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Table -1.7. The surface tension for selected materials (continue)

Chemical
component

Surface
Tension
mN
m

T
correction
mN
m K

Benzylbenzoate 45.95 - -0.1066
Bromobenzene 36.50 - -0.1160
Bromobenzene 36.50 - -0.1160
Bromoform 41.50 - -0.1308
Butyronitrile 28.10 - -0.1037
Carbon disulfid 32.30 - -0.1484
Quinoline 43.12 - -0.1063
Chloro benzene 33.60 - -0.1191
Chloroform 27.50 - -0.1295
Cyclohexane 24.95 - -0.1211
Cyclohexanol 34.40 25◦C -0.0966
Cyclopentanol 32.70 - -0.1011
Carbon Tetrachloride 26.8 - n/a
Carbon disulfid 32.30 - -0.1484
Chlorobutane 23.10 - -0.1117
Ethyl Alcohol 22.3 - n/a
Ethanol 22.10 - -0.0832
Ethylbenzene 29.20 - -0.1094
Ethylbromide 24.20 - -0.1159
Ethylene glycol 47.70 - -0.0890
Formamide 58.20 - -0.0842
Gasoline ∼ 21 - n/a
Glycerol 64.0 - -0.0598
Helium 0.12 −269◦C n/a
Mercury 425-465.0 - -0.2049
Methanol 22.70 - -0.0773
Methyl naphthalene 38.60 - -0.1118
Methyl Alcohol 22.6 - n/a
Neon 5.15 −247◦C n/a
Nitrobenzene 43.90 - -0.1177
Olive Oil 43.0-48.0 - -0.067
Perfluoroheptane 12.85 - -0.0972
Perfluorohexane 11.91 - -0.0935
Perfluorooctane 14.00 - -0.0902
Phenylisothiocyanate 41.50 - -0.1172
Propanol 23.70 25◦C -0.0777
Pyridine 38.00 - -0.1372

Continued on next page
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Table -1.7. The surface tension for selected materials (continue)

Chemical
component

Surface
Tension
mN
m

T
correction
mN
m K

Pyrrol 36.60 - -0.1100
SAE 30 Oil n/a - n/a
Seawater 54-69 - n/a
Toluene 28.4 - -0.1189
Turpentine 27 - n/a
Water 72.80 - -0.1514
o-Xylene 30.10 - -0.1101
m-Xylene 28.90 - -0.1104



CHAPTER 2

Review of Thermodynamics

In this chapter, a review of several definitions of common thermodynamics terms is
presented. This introduction is provided to bring the student back to current place with
the material.

2.1 Basic Definitions
The following basic definitions are common to thermodynamics and will be used in this
book.

Work

In mechanics, the work was defined as

mechanical work =
∫

F • d` =
∫

PdV (2.1)

This definition can be expanded to include two issues. The first issue that must
be addressed, that work done on the surroundings by the system boundaries similarly is
positive. Two, there is a transfer of energy so that its effect can cause work. It must
be noted that electrical current is a work while heat transfer isn’t.

System

This term will be used in this book and it is defined as a continuous (at least
partially) fixed quantity of matter. The dimensions of this material can be changed.
In this definition, it is assumed that the system speed is significantly lower than that
of the speed of light. So, the mass can be assumed constant even though the true
conservation law applied to the combination of mass energy (see Einstein’s law). In
fact for almost all engineering purpose this law is reduced to two separate laws of mass
conservation and energy conservation.

47
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Our system can receive energy, work, etc as long the mass remain constant the
definition is not broken.

Thermodynamics First Law
This law refers to conservation of energy in a non accelerating system. Since all

the systems can be calculated in a non accelerating systems, the conservation is applied
to all systems. The statement describing the law is the following.

Q12 −W12 = E2 − E1 (2.2)

The system energy is a state property. From the first law it directly implies that
for process without heat transfer (adiabatic process) the following is true

W12 = E1 − E2 (2.3)

Interesting results of equation (2.3) is that the way the work is done and/or intermediate
states are irrelevant to final results. There are several definitions/separations of the kind
of works and they include kinetic energy, potential energy (gravity), chemical potential,
and electrical energy, etc. The internal energy is the energy that depends on the
other properties of the system. For example for pure/homogeneous and simple gases it
depends on two properties like temperature and pressure. The internal energy is denoted
in this book as EU and it will be treated as a state property.

The potential energy of the system is depended on the body force. A common
body force is the gravity. For such body force, the potential energy is mgz where g is
the gravity force (acceleration), m is the mass and the z is the vertical height from a
datum. The kinetic energy is

K.E. =
mU2

2
(2.4)

Thus the energy equation can be written as

mU1
2

2
+ mgz1 + EU 1 + Q =

mU2
2

2
+ mgz2 + EU 2 + W

Total Energy Equation

(2.5)

For the unit mass of the system equation (2.5) is transformed into

U1
2

2
+ gz1 + Eu1 + q =

U2
2

2
+ gz2 + Eu2 + w

Spesific Energy Equation

(2.6)

where q is the energy per unit mass and w is the work per unit mass. The “new”
internal energy, Eu, is the internal energy per unit mass.
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Since the above equations are true between arbitrary points, choosing any point in
time will make it correct. Thus differentiating the energy equation with respect to time
yields the rate of change energy equation. The rate of change of the energy transfer is

DQ

Dt
= Q̇ (2.7)

In the same manner, the work change rate transfered through the boundaries of the
system is

DW

Dt
= Ẇ (2.8)

Since the system is with a fixed mass, the rate energy equation is

Q̇− Ẇ =
D EU

Dt
+ mU

DU

Dt
+ m

D Bf z

Dt
(2.9)

For the case were the body force, Bf , is constant with time like in the case of gravity
equation (2.9) reduced to

Q̇− Ẇ =
D EU

Dt
+ mU

DU

Dt
+ mg

D z

Dt

Time Dependent Energy Equation

(2.10)

The time derivative operator, D/Dt is used instead of the common notation
because it referred to system property derivative.

Thermodynamics Second Law

There are several definitions of the second law. No matter which definition is
used to describe the second law it will end in a mathematical form. The most common
mathematical form is Clausius inequality which state that

∮
δQ

T
≥ 0 (2.11)

The integration symbol with the circle represent integral of cycle (therefor circle) in
with system return to the same condition. If there is no lost, it is referred as a reversible
process and the inequality change to equality.

∮
δQ

T
= 0 (2.12)

The last integral can go though several states. These states are independent of the
path the system goes through. Hence, the integral is independent of the path. This
observation leads to the definition of entropy and designated as S and the derivative of
entropy is

ds ≡
(

δQ

T

)

rev
(2.13)



50 CHAPTER 2. REVIEW OF THERMODYNAMICS

Performing integration between two states results in

S2 − S1 =
∫ 2

1

(
δQ

T

)

rev
=

∫ 2

1

dS (2.14)

One of the conclusions that can be drawn from this analysis is for reversible and
adiabatic process dS = 0. Thus, the process in which it is reversible and adiabatic, the
entropy remains constant and referred to as isentropic process. It can be noted that
there is a possibility that a process can be irreversible and the right amount of heat
transfer to have zero change entropy change. Thus, the reverse conclusion that zero
change of entropy leads to reversible process, isn’t correct.

For reversible process equation (2.12) can be written as

δQ = TdS (2.15)

and the work that the system is doing on the surroundings is

δW = PdV (2.16)

Substituting equations (2.15) (2.16) into (2.10) results in

TdS = dEU + PdV (2.17)

Even though the derivation of the above equations were done assuming that
there is no change of kinetic or potential energy, it still remail valid for all situations.
Furthermore, it can be shown that it is valid for reversible and irreversible processes.

Enthalpy

It is a common practice to define a new property, which is the combination of
already defined properties, the enthalpy of the system.

H = EU + PV (2.18)

The specific enthalpy is enthalpy per unit mass and denoted as, h.
Or in a differential form as

dH = dEU + dP V + P dV (2.19)

Combining equations (2.18) the (2.17) yields

TdS = dH − V dP

(one form of) Gibbs Equation

(2.20)

For isentropic process, equation (2.17) is reduced to dH = V dP . The equation (2.17)
in mass unit is

Tds = du + Pdv = dh− dP

ρ
(2.21)
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when the density enters through the relationship of ρ = 1/v.

Specific Heats

The change of internal energy and enthalpy requires new definitions. The first
change of the internal energy and it is defined as the following

Cv ≡
(

∂Eu

∂T

)
Spesific Volume Heat

(2.22)

And since the change of the enthalpy involve some kind of work is defined as

Cp ≡
(

∂h

∂T

)
Spesific Pressure Heat

(2.23)

The ratio between the specific pressure heat and the specific volume heat is called
the ratio of the specific heat and it is denoted as, k.

k ≡ Cp

Cv

Spesific Heats Ratio

(2.24)

For solid, the ratio of the specific heats is almost 1 and therefore the difference
between them is almost zero. Commonly the difference for solid is ignored and both are
assumed to be the same and therefore referred as C. This approximation less strong
for liquid but not by that much and in most cases it applied to the calculations. The
ratio the specific heat of gases is larger than one.

Equation of state
Equation of state is a relation between state variables. Normally the relationship

of temperature, pressure, and specific volume define the equation of state for gases.
The simplest equation of state referred to as ideal gas. and it is defined as

P = ρRT (2.25)

Application of Avogadro’s law, that ”all gases at the same pressures and temperatures
have the same number of molecules per unit of volume,” allows the calculation of a
“universal gas constant.” This constant to match the standard units results in

R̄ = 8.3145
kj

kmol K
(2.26)
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Thus, the specific gas can be calculate as

R =
R̄

M
(2.27)

The specific constants for select gas at 300K is provided in table 2.1.

Table -2.1. Properties of Various Ideal Gases [300K]

Gas Chemical
Formula

Molecular
Weight

R
[

kj
KgK

]
CP

[
kj

KgK

]
Cv

[
kj

KgK

]
k

Air - 28.970 0.28700 1.0035 0.7165 1.400
Argon Ar 39.948 0.20813 0.5203 0.3122 1.667
Butane C4H10 58.124 0.14304 1.7164 1.5734 1.091
Carbon
Dioxide

CO2 44.01 0.18892 0.8418 0.6529 1.289

Carbon
Monoxide

CO 28.01 0.29683 1.0413 0.7445 1.400

Ethane C2H6 30.07 0.27650 1.7662 1.4897 1.186
Ethylene C2H4 28.054 0.29637 1.5482 1.2518 1.237
Helium He 4.003 2.07703 5.1926 3.1156 1.667
Hydrogen H2 2.016 4.12418 14.2091 10.0849 1.409
Methane CH4 16.04 0.51835 2.2537 1.7354 1.299
Neon Ne 20.183 0.41195 1.0299 0.6179 1.667

Nitrogen N2 28.013 0.29680 1.0416 0.7448 1.400
Octane C8H18 114.230 0.07279 1.7113 1.6385 1.044
Oxygen O2 31.999 0.25983 0.9216 0.6618 1.393
Propane C3H8 44.097 0.18855 1.6794 1.4909 1.126
Steam H2O 18.015 0.48152 1.8723 1.4108 1.327

From equation (2.25) of state for perfect gas it follows

d(Pv) = RdT (2.28)

For perfect gas

dh = dEu + d(Pv) = dEu + d(RT ) = f(T ) (only) (2.29)



2.1. BASIC DEFINITIONS 53

From the definition of enthalpy it follows that

d(Pv) = dh− dEu (2.30)

Utilizing equation (2.28) and subsisting into equation (2.30) and dividing by dT yields

Cp − Cv = R (2.31)

This relationship is valid only for ideal/perfect gases.
The ratio of the specific heats can be expressed in several forms as

Cv =
R

k − 1

Cv to Spesific Heats Ratio

(2.32)

Cp =
k R

k − 1

Cp to Spesific Heats Ratio

(2.33)

The specific heat ratio, k value ranges from unity to about 1.667. These values depend
on the molecular degrees of freedom (more explanation can be obtained in Van Wylen
“F. of Classical thermodynamics.” The values of several gases can be approximated as
ideal gas and are provided in Table (2.1).

The entropy for ideal gas can be simplified as the following

s2 − s1 =
∫ 2

1

(
dh

T
− dP

ρT

)
(2.34)

Using the identities developed so far one can find that

s2 − s1 =
∫ 2

1

Cp
dT

T
−

∫ 2

1

R dP

P
= Cp ln

T2

T1
−R ln

P2

P1
(2.35)

Or using specific heat ratio equation (2.35) transformed into

s2 − s1

R
=

k

k − 1
ln

T2

T1
− ln

P2

P1
(2.36)

For isentropic process, ∆s = 0, the following is obtained

ln
T2

T1
= ln

(
P2

P1

) k−1
k

(2.37)

There are several famous identities that results from equation (2.37) as

T2

T1
=

(
P2

P1

) k−1
k

=
(

V1

V2

)k−1

Ideal Gas Isontropic Relationships

(2.38)
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The ideal gas model is a simplified version of the real behavior of real gas. The
real gas has a correction factor to account for the deviations from the ideal gas model.
This correction factor referred as the compressibility factor and defined as

Z =
P V

R T

Z deviation from the Ideal Gas Model

(2.39)



CHAPTER 3

Review of Mechanics
This author would like to express his gratitude to Dan

Olsen (former Minneapolis city Engineer) and his friend

Richard Hackbarth.

This chapter provides a review of important definitions and concepts from Me-
chanics (statics and dynamics). These concepts and definitions will be used in this book
and a review is needed.

3.1 Kinematics of of Point Body

A point body is location at time, t in a location, ~RRR. The velocity is derivative of
the change of the location and using the chain role (for the direction and one for the
magnitude) results,

~UUU =
d~RRR

dt
=

change in R
direction︷ ︸︸ ︷

d~RRR

dt

∣∣∣∣∣
R

+

change in per-
pendicular to R︷ ︸︸ ︷

~ω × ~RRR (3.1)

Notice that ~ω can have three dimensional components. It also can be noticed that this
derivative is present derivation of any victory. The acceleration is the derivative of the
velocity

~aaa =
d~UUU

dt
=

“regular
acceleration”︷ ︸︸ ︷

d2~RRR

dt2

∣∣∣∣∣
R

+

angular
acceleration︷ ︸︸ ︷(
~RRR× d~ω

dt

)
+

centrifugal
acceleration︷ ︸︸ ︷

~ω ×
(
~RRR× ~ω

)
+

Coriolis
acceleration︷ ︸︸ ︷

2

(
d~RRR

dt

∣∣∣∣∣
R

× ω

)
(3.2)

Example 3.1:
A water jet is supposed be used to extinguish the fire in a building as depicted in Figure

55
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3.11. For given velocity, at what angle the jet has to be shot so that velocity will be
horizontal at the window. Assume that gravity is g and the distance of the nozzle

θ

U cos θU sin θ

a

b

Fig. -3.1. Description of the extinguish
nozzle aimed at the building window.

from the building is a and height
of the window from the nozzle is
b. To simplify the calculations, it
proposed to calculate the velocity
of the point particle to toward the
window. Calculate what is the ve-
locity so that the jet reach the win-
dow. What is the angle that jet
has to be aimed.

Solution

The initial velocity is unknown and denoted as U which two components. The velocity
at x is Ux = U cos θ and the velocity in y direction is Uy = U sin θ. There there
are three unknowns, U , θ, and time, t and three equations. The equation for the x
coordinate is

a = U cos θ t (3.I.a)

The distance for y equation for coordinate (zero is at the window) is

0 = −g t2

2
+ U sin θ t− b (3.I.b)

The velocity for the y coordinate at the window is zero

u(t) = 0 = −g t + U sin θ (3.I.c)

These nonlinear equations (3.I.a), (3.I.b) and (3.I.c) can be solved explicitly. Isolating
t from (3.I.a) and substituting into equations (3.I.b) and (3.I.c)

b =
−g a2

2 U2 cos2θ
+ a tan θ (3.I.d)

and equation (3.I.a) becomes

0 =
−g a

U cos θ
+ U cos θ =⇒ U =

√
a g

cos θ
(3.I.e)

Substituting (3.I.e) into (3.I.d) results in

tan θ =
b

a
+

1
2

(3.I.f)

End Solution

1While the simple example does not provide exact use of the above equation it provides experience
of going over the motions of kinematics.
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3.2 Center of Mass

The center of mass is divided into two sections, first, center of the mass and two, center
of area (two–dimensional body with equal distribution mass).

3.2.1 Actual Center of Mass

In many engineering problems, the center of mass is required to make the calculations.
This concept is derived from the fact that a body has a center of mass/gravity which
interacts with other bodies and that this force acts on the center (equivalent force). It
turns out that this concept is very useful in calculating rotations, moment of inertia,
etc. The center of mass doesn’t depend on the coordinate system and on the way it is
calculated. The physical meaning of the center of mass is that if a straight line force
acts on the body in away through the center of gravity, the body will not rotate. In
other words, if a body will be held by one point it will be enough to hold the body
in the direction of the center of mass. Note, if the body isn’t be held through the
center of mass, then a moment in additional to force is required (to prevent the body
for rotating). It is convenient to use the Cartesian system to explain this concept.
Suppose that the body has a distribution of the mass (density, rho) as a function
of the location. The density “normally” defined as mass per volume. Here, the the
line density is referred to density mass per unit length in the x direction.

x

y

z

dV

Fig. -3.2. Description of how the center of mass
is calculated.

In x coordinate, the center will be defined
as

x̄ =
1
m

∫

V

x

dm︷ ︸︸ ︷
ρ(x)dV (3.3)

Here, the dV element has finite dimen-
sions in y–z plane and infinitesimal dimen-
sion in x direction see Figure 3.2. Also, the
mass, m is the total mass of the object. It
can be noticed that center of mass in the
x–direction isn’t affected by the distribu-
tion in the y nor by z directions. In same
fashion the center of mass can be defined
in the other directions as following

x̄i =
1
m

∫

V

xiρ(xi)dV

xi of Center Mass

(3.4)

where xi is the direction of either, x, y or z. The density, ρ(xi) is the line density as
function of xi. Thus, even for solid and uniform density the line density is a function
of the geometry.
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3.2.2 Aproximate Center of Area

x

Y

z

t
dA

Fig. -3.3. Thin body center of mass/area
schematic.

In the previous case, the body was a three
dimensional shape. There are cases where
the body can be approximated as a two-
dimensional shape because the body is
with a thin with uniform density. Consider
a uniform thin body with constant thick-
ness shown in Figure 3.3 which has density,
ρ. Thus, equation (3.3) can be transferred
into

x̄ =
1

tA︸︷︷︸
V

ρ

∫

V

x

dm︷ ︸︸ ︷
ρ t dA (3.5)

The density, ρ and the thickness, t, are constant and can be canceled. Thus equation
(3.5) can be transferred into

x̄i =
1
A

∫

A

xidA

Aproxiate xi of Center Mass

(3.6)

when the integral now over only the area as oppose over the volume.
Finding the centroid location should be done in the most convenient coordinate

system since the location is coordinate independent.

3.3 Moment of Inertia
As it was divided for the body center of mass, the moment of inertia is divided into
moment of inertia of mass and area.

3.3.1 Moment of Inertia for Mass

The moment of inertia turns out to be an essential part for the calculations of ro-
tating bodies. Furthermore, it turns out that the moment of inertia has much wider
applicability. Moment of inertia of mass is defined as

Irrm =
∫

m

ρr2dm

Moment of Inertia

(3.7)

If the density is constant then equation (3.7) can be transformed into

Irrm = ρ

∫

V

r2dV (3.8)
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The moment of inertia is independent of the coordinate system used for the calculation,
but dependent on the location of axis of rotation relative to the body. Some people
define the radius of gyration as an equivalent concepts for the center of mass concept
and which means if all the mass were to locate in the one point/distance and to obtain
the same of moment of inertia.

rk =

√
Im

m
(3.9)

The body has a different moment of inertia for every coordinate/axis and they are

Ixx =
∫

V
rx

2dm =
∫

V
(y2 + z2) dm

Iyy =
∫

V
ry

2dm =
∫

V
(x2 + z2) dm

Izz =
∫

V
rz

2dm =
∫

V
(x2 + y2) dm

(3.10)

3.3.2 Moment of Inertia for Area

3.3.2.1 General Discussion

For body with thickness, t and uniform density the following can be written

Ixxm =
∫

m

r2dm = ρ t

moment of iner-
tia for area︷ ︸︸ ︷∫

A

r2dA (3.11)

The moment of inertia about axis is x can be defined as

Ixx =
∫

A

r2dA =
Ixxm

ρ t

Moment of Inertia

(3.12)

where r is distance of dA from the axis x and t is the thickness.

x’

y’

z’

C x

y

z

∆x

∆y

Fig. -3.4. The schematic that explains the sum-
mation of moment of inertia.

Any point distance can be calculated from
axis x as

x =
√

y2 + z2 (3.13)

Thus, equation (3.12) can be written as

Ixx =
∫

A

(
y2 + z2

)
dA (3.14)

In the same fashion for other two coordi-
nates as

Iyy =
∫

A

(
x2 + z2

)
dA (3.15)
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Izz =
∫

A

(
x2 + y2

)
dA (3.16)

3.3.2.2 The Parallel Axis Theorem

The moment of inertial can be calculated for any axis. The knowledge about one axis
can help calculating the moment of inertia for a parallel axis. Let Ixx the moment of
inertia about axis xx which is at the center of mass/area.

The moment of inertia for axis x
′
is

Ix′x′ =
∫

A

r
′2

dA =
∫

A

(
y
′2

+ z
′2)

dA =
∫

A

[
(y + ∆y)2 + (z + ∆z)2

]
dA (3.17)

equation (3.17) can be expended as

Ix′x′ =

Ixx︷ ︸︸ ︷∫

A

(
y2 + z2

)
dA +

=0︷ ︸︸ ︷
2

∫

A

(y ∆y + z ∆z) dA+
∫

A

(
(∆y)2 + (∆z)2

)
dA (3.18)

The first term in equation (3.18) on the right hand side is the moment of inertia about
axis x and the second them is zero. The second therm is zero because it integral of
center about center thus is zero. The third term is a new term and can be written as

∫

A

constant︷ ︸︸ ︷(
(∆y)2 + (∆z)2

)
dA =

r2︷ ︸︸ ︷(
(∆y)2 + (∆z)

)
A︷ ︸︸ ︷∫ 2

A

dA = r2 A (3.19)

Hence, the relationship between the moment of inertia at xx and parallel axis
x
′
x
′
is

Ix′x′ = Ixx + r2 A

Parallel Axis Equation

(3.20)

x

z

1

2

y

Fig. -3.5. The schematic to explain the sum-
mation of moment of inertia.

The moment of inertia of several ar-
eas is the sum of moment inertia of each
area see Figure 3.5 and therefore,

Ixx =
n∑

i=1

Ixxi (3.21)

If the same areas are similar thus

Ixx =
n∑

i=1

Ixxi = n Ixxi (3.22)
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dr

h

r

Fig. -3.6. Cylinder with an element for calcula-
tion moment of inertia.

Equation (3.22) is very useful in the
calculation of the moment of inertia utiliz-
ing the moment of inertia of known bod-
ies. For example, the moment of inertial
of half a circle is half of whole circle for
axis a the center of circle. The moment of
inertia can then move the center of area.
of the

3.3.3 Examples of Moment of Inertia

Example 3.2:
Calculate the moment of inertia for the mass of the cylinder about center axis which
height of h and radius, r0, as shown in Figure 3.6. The material is with an uniform
density and homogeneous.

Solution

The element can be calculated using cylindrical coordinate. Here the convenient element
is a shell of thickness dr which shown in Figure 3.6 as

Irr = ρ

∫

V

r2dm = ρ

∫ r0

0

r2

dV︷ ︸︸ ︷
h 2 π r dr = ρ h 2 π

r0
4

4
=

1
2
ρhπr0

4 =
1
2
mr0

2

The radius of gyration is

rk =

√
1
2 mr0

2

m
=

r0√
2

End Solution

Example 3.3:
Calculate the moment of inertia of the rectangular shape shown in Figure 3.7 around x
coordinate.

x

y

z

dx

a

b

Fig. -3.7. Description of rectangular in x–y
plane for calculation of moment of inertia.

Solution

The moment of inertia is calculated utilizing
equation (3.14) as following

Ixx =
∫

A




0︷︸︸︷
y2 +z2


 dA =

∫ a

0

z2

dA︷︸︸︷
bdz =

a3 b

3

This value will be used in later examples.
End Solution
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Example 3.4:
To study the assumption of zero thickness, consider a simple shape to see the effects of
this assumption. Calculate the moment of inertia about the center of mass of a square
shape with a thickness, t compare the results to a square shape with zero thickness.

Solution

The moment of inertia of transverse slice about y
′
(see Figure mech:fig:squareEll) is

dIxxm = ρ

t︷︸︸︷
dy

Ixx︷︸︸︷
b a3

12
(3.23)

dz

a

b

Fig. -3.8. A square element for the calcula-
tions of inertia of two-dimensional to three–
dimensional deviations.

The transformation into from local axis x
to center axis, x

′
can be done as following

dIx′x′m = ρdy




Ixx︷︸︸︷
b a3

12
+

r2 A︷ ︸︸ ︷
z2︸︷︷︸
r2

b a︸︷︷︸
A




(3.24)

The total moment of inertia can be ob-
tained by integration of equation (3.24) to
write as

Ixxm = ρ

∫ t/2

−t/2

(
b a3

12
+ z2 b a

)
dz = ρ t

a b t2 + a3 b

12
(3.25)

t

a

I
x
x

I
x
x

m

February 28, 2008

Fig. -3.9. The ratio of the moment of inertia of
two-dimensional to three–dimensional.

Comparison with the thin body re-
sults in

Ixx ρ t

Ixxm

=
b a3

t2 b a + b a3
=

1
1 + t2

a2

(3.26)

It can be noticed right away that
equation (3.26) indicates that ratio ap-
proaches one when thickness ratio is ap-
proaches zero, Ixxm(t → 0) → 1. Ad-
ditionally it can be noticed that the ratio
a2/t2 is the only contributor to the error2.
The results are present in Figure 3.9. I can be noticed that the error is significant very
fast even for small values of t/a while the with of the box, b has no effect on the error.

End Solution

2This ratio is a dimensionless number that commonly has no special name. This author suggests
to call this ratio as the B number.
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Example 3.5:

y r

x

dx

dy

2a

2b

Fig. -3.10. Rectangular Moment of
inertia.

Calculate the rectangular moment of In-
ertia for the rotation trough center in zz
axis (axis of rotation is out of the page).
Hint, construct a small element and build
longer build out of the small one. Using
this method calculate the entire rectangu-
lar.

Solution

The moment of inertia for a long element with a distance y shown in Figure 3.10 is

d Izz|dy =
∫ a

−a

r2︷ ︸︸ ︷(
y2 + x2

)
dy dx =

2
(
3 a y2 + a3

)

3
dy (3.V.a)

The second integration ( no need to use (3.20), why?) is

Izz =
∫ b

−b

2
(
3 a y2 + a3

)

3
dy (3.V.b)

Results in

Izz =
a

(
2 a b3 + 2 a3 b

)

3
=

4 a b︷︸︸︷
A

(
(2a)2 + (2b)2

12

)
(3.V.c)

Or
End Solution

Example 3.6:

Fig. -3.11. Parabola for calcu-
lations of moment of inertia.

Calculate the center of area and moment of inertia
for the parabola, y = αx2, depicted in Figure 3.11.
Hint, calculate the area first. Use this area to cal-
culate moment of inertia. There are several ways
to approach the calculation (different infinitesimal
area).

Solution

For y = b the value of x =
√

b/α. First the area inside the parabola calculated as

A = 2
∫ √

b/α

0

dA/2︷ ︸︸ ︷
(b− αξ2)dξ =

2(3α− 1)
3

(
b

α

) 3
2
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The center of area can be calculated utilizing equation (3.6). The center of every

element is at,
(
α ξ2 + b−αξ2

2

)
the element area is used before and therefore

xc =
1
A

∫ √
b/α

0

xc︷ ︸︸ ︷(
αξ2 +

(b− αξ2)
2

) dA︷ ︸︸ ︷
(b− αξ2)dξ =

3 α b

15 α− 5
(3.27)

The moment of inertia of the area about the center can be found using in equation
(3.27) can be done in two steps first calculate the moment of inertia in this coordinate
system and then move the coordinate system to center. Utilizing equation (3.14) and
doing the integration from 0 to maximum y provides

Ix′x′ = 4
∫ b

0

ξ2

dA︷ ︸︸ ︷√
ξ

α
dξ =

2 b7/2

7
√

α

Utilizing equation (3.20)

Ixx = Ix′x′ −A ∆x2 =

I
x
′
x
′︷ ︸︸ ︷

4 b7/2

7
√

α
−

A︷ ︸︸ ︷
3 α− 1

3

(
b

α

) 3
2

(∆x=xc)
2

︷ ︸︸ ︷(
3 α b

15 α− 5

)2

or after working the details results in

Ixx =

√
b

(
20 b3 − 14 b2

)

35
√

α

End Solution

Example 3.7:

Y

X

a

h

dy

Fig. -3.12. Triangle for exam-
ple 3.7.

Calculate the moment of inertia of strait angle tri-
angle about its y axis as shown in the Figure on the
right. Assume that base is a and the height is h.
What is the moment when a symmetrical triangle
is attached on left. What is the moment when a
symmetrical triangle is attached on bottom. What
is the moment inertia when a −→ 0. What is the
moment inertia when h −→ 0.

Solution

The right edge line equation can be calculated as

y

h
=

(
1− x

a

)
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or
x

a
=

(
1− y

h

)

Now using the moment of inertia of rectangle on the side (y) coordinate (see example
(3.3))

∫ h

0

a
(
1− y

h

)3

dy

3
=

a3 h

4

For two triangles attached to each other the moment of inertia will be sum as a3 h
2

The rest is under construction.
End Solution

3.3.4 Product of Inertia

In addition to the moment of inertia, the product of inertia is commonly used. Here
only the product of the area is defined and discussed. The product of inertia defined as

Ixi xj =
∫

A

xi xjdA (3.28)

For example, the product of inertia for x and y axises is

Ixy =
∫

A

x ydA (3.29)

Product of inertia can be positive or negative value as oppose the moment of
inertia. The calculation of the product of inertia isn’t different much for the calculation
of the moment of inertia. The units of the product of inertia are the same as for moment
of inertia.

Transfer of Axis Theorem

Same as for moment of inertia there is also similar theorem.

Ix′y′ =
∫

A

x
′
y
′
dA =

∫

A

(x + ∆x) (y + ∆y)dA (3.30)

expanding equation (3.30) results in

Ix′y′ =

Ixy︷ ︸︸ ︷∫

A

x ydA +

∆y

0︷ ︸︸ ︷∫

A

x dA

︷ ︸︸ ︷∫

A

x∆ydA +

∆x

0︷ ︸︸ ︷∫

A

y dA

︷ ︸︸ ︷∫

A

∆x ydA +

∆x ∆y A︷ ︸︸ ︷∫

A

∆x∆ydA (3.31)
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The final form is

Ix′y′ = Ixy + ∆x∆y A (3.32)

There are several relationships should be mentioned

Ixy = Iyx (3.33)

Symmetrical area has zero product of inertia because integration of odd function (asym-
mmertial function) left part cancel the right part.

Example 3.8:
Calculate the product of inertia of straight edge triangle.

x

x

′

y
′

y

a

b

Fig. -3.13. Product of iner-
tia for triangle.

Solution

The equation of the line is

y =
a

b
x + a

The product of inertia at the center is zero. The total prod-
uct of inertia is

Ix′y′ = 0 +

∆x︷︸︸︷
a

3

∆y︷︸︸︷
b

3

A︷ ︸︸ ︷(
a b

2

)
=

a2 b2

18

End Solution

3.3.5 Principal Axes of Inertia

The inertia matrix or inertia tensor is

∣∣∣∣∣∣

Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

∣∣∣∣∣∣
(3.34)

In linear algebra it was shown that for some angle equation (3.34) can be transform
into

∣∣∣∣∣∣

Ix′x′ 0 0
0 Iy′y′ 0
0 0 Iz′z′

∣∣∣∣∣∣
(3.35)

System which creates equation (3.35) referred as principle system.



3.4. NEWTON’S LAWS OF MOTION 67

3.4 Newton’s Laws of Motion
These laws can be summarized in two statements one, for every action by body A on
Body B there is opposite reaction by body B on body A. Two, which can expressed in
mathematical form as

∑
F =

D (mU)
Dt

(3.36)

It can be noted that D replaces the traditional d since the additional meaning
which be added. Yet, it can be treated as the regular derivative. This law apply to any
body and any body can “broken” into many small bodies which connected to each other.
These small “bodies” when became small enough equation (3.36) can be transformed
to a continuous form as

∑
F =

∫

V

D (ρ U)
Dt

dV (3.37)

The external forces are equal to internal forces the forces between the “small” bodies
are cancel each other. Yet this examination provides a tool to study what happened in
the fluid during operation of the forces.

Since the derivative with respect to time is independent of the volume, the deriva-
tive can be taken out of the integral and the alternative form can be written as

∑
F =

D

Dt

∫

V

ρ UdV (3.38)

The velocity, U is a derivative of the location with respect to time, thus,

∑
F =

D2

Dt2

∫

V

ρ rdV (3.39)

where r is the location of the particles from the origin.
The external forces are typically divided into two categories: body forces and

surface forces. The body forces are forces that act from a distance like magnetic field
or gravity. The surface forces are forces that act on the surface of the body (pressure,
stresses). The same as in the dynamic class, the system acceleration called the inter-
nal forces. The acceleration is divided into three categories: Centrifugal, ω×(r× ω),
Angular, r× ω̇, Coriolis, 2 (Ur × ω). The radial velocity is denoted as Ur.

3.5 Angular Momentum and Torque
The angular momentum of body, dm, is defined as

L = r×Udm (3.40)

The angular momentum of the entire system is calculated by integration (summation)
of all the particles in the system as

Ls =
∫

m

r× U dm (3.41)
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The change with time of angular momentum is called torque, in analogous to the
momentum change of time which is the force.

Tτ =
D L

Dt
=

D

Dt
(r×Udm) (3.42)

where Tτ is the torque. The torque of entire system is

Tτ s =
∫

m

D L

Dt
=

D

Dt

∫

m

(r×Udm) (3.43)

It can be noticed (well, it can be proved utilizing vector mechanics) that

Tτ =
D

Dt
(r×U) =

D

Dt
(r× D r

Dt
) =

D2r
Dt2

(3.44)

To understand these equations a bit better, consider a particle moving in x–y plane.
A force is acting on the particle in the same plane (x–y) plane. The velocity can be
written as U = uî + vĵ and the location from the origin can be written as r = xî + yĵ.
The force can be written, in the same fashion, as F = Fxî + Fy ĵ. Utilizing equation
(3.40) provides

L = r×U =




î ĵ k̂
x y 0
u v 0


 = (x v − y u)k̂ (3.45)

Utilizing equation (3.42) to calculate the torque as

Tτ = r× F =




î ĵ k̂
x y 0
Fx Fy 0


 = (xFx − y Fy)k̂ (3.46)

Since the torque is a derivative with respect to the time of the angular momentum it
is also can be written as

xFx − yFy =
D

Dt
[(xv − yu) dm] (3.47)

The torque is a vector and the various components can be represented as

Tτ x = î • D

Dt

∫

m

r×U dm (3.48)

In the same way the component in y and z can be obtained.

3.5.1 Tables of geometries

Th following tables present several moment of inertias of commonly used geometries.
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Table -3.1. Moments of Inertia for various plane surfaces about their center of gravity (full
shapes)

Shape
Name

Picture
description

xc, yc A Ixx

Rectangle
b

a

b/2

XX
b

2
;
a

2
a b

ab3

12

Triangle
b

a

b/3

XX
a

3
a b

3
ab3

36

Circle

b

a

b/2

XX a = b
b

2
π b2

4
πb4

64

Ellipse
b

a

b/2

XX a > b b

2
b

2
π ab

4
Ab2

64

y = αx2

Parabola

b
XX

xc

a

3 α b
15 α−5

6α−2
3 ×

(
b
α

) 3
2

√
b (20 b3−14 b2)

35
√

α
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Table -3.2. Moment of inertia for various plane surfaces about their center of gravity

Shape
Name

Picture
description

xc, yc A Ixx

Quadrant
of Circle

r

r

XX

4 r

3 π

4 r

3 π

π r2

4
r4( π

16− 4
9π )

Ellipsoidal
Quadrant

b

a

XX

4b

3 π

4 b

3 π

π a b

4
a b3( π

16− 4
9π )

Half of
Elliptic

b

a

XX

4b

3 π

4 b

3 π

π a b

4
a b3( π

16− 4
9π )

Circular
Sector

r

XX
α

α

0 2α r2 r4
4 (α− 1

2 sin 2α)

Circular
Sector r

XX
α 2

3

r sin α

α

α

2
3

r sin α
α 2α r2

Ix′x′ =

r4
4 (α+ 1

2 sin 2α)



CHAPTER 4

Fluids Statics

4.1 Introduction
The simplest situation that can occur in the study of fluid is when the fluid is at rest or
quasi rest. This topic was introduced to most students in previous study of rigid body.
However, here this topic will be more vigorously examined. Furthermore, the student
will be exposed to stability analysis probably for the first time. Later, the methods
discussed here will be expanded to more complicated dynamics situations.

4.2 The Hydrostatic Equation

x

y

z

dx

dy

dz

P





P +
∂P

∂x
dx





 dydz

P








P +

∂P

∂y
dy








dxdz





P +
∂P

∂z
dz





 dxdy

Fig. -4.1. Description of a fluid element in accel-
erated system under body forces.

A fluid element with dimensions of DC,
dy, and dz is motionless in the accel-
erated system, with acceleration, a as
shown in Figure 4.1. The system is
in a body force field, gG(x, y, z). The
combination of an acceleration and the
body force results in effective body force
which is

gG − a = geff (4.1)

Equation (4.1) can be reduced and simplified for the case of no acceleration, a = 0.
In these derivations, several assumptions must be made. The first assumption

is that the change in the pressure is a continuous function. There is no requirement
that the pressure has to be a monotonous function e.g. that pressure can increase
and later decrease. The changes of the second derivative pressure are not significant
compared to the first derivative (∂P/∂n × d` >> ∂2P/∂n2). where n is the steepest

71
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direction of the pressure derivative and d` is the infinitesimal length. This mathematical
statement simply requires that the pressure can deviate in such a way that the average
on infinitesimal area can be found and expressed as only one direction. The net pressure
force on the faces in the x direction results in

dF = −
(

∂P

∂x

)
dydx î (4.2)

In the same fashion, the calculations of the three directions result in the total net
pressure force as

∑

surface

F = −
(

∂P

∂x
î +

∂P

∂y
ĵ +

∂P

∂y
k̂

)
(4.3)

The term in the parentheses in equation (4.3) referred to in the literature as
the pressure gradient (see for more explanation in the Mathematics Appendix). This
mathematical operation has a geometrical interpretation. If the pressure, P , was a
two–dimensional height (that is only a function of x and y) then the gradient is the
steepest ascent of the height (to the valley). The second point is that the gradient is a
vector (that is, it has a direction). Even though, the pressure is treated, now, as a scalar
function (there no reference to the shear stress in part of the pressure) the gradient is
a vector. For example, the dot product of the following is

î · gradP = î · ∇P =
∂P

∂x
(4.4)

In general, if the coordinates were to “rotate/transform” to a new system which
has a different orientation, the dot product results in

in · gradP = in · ∇P =
∂P

∂n
(4.5)

where in is the unit vector in the n direction and ∂/∂n is a derivative in that direction.
As before, the effective gravity force is utilized in case where the gravity is the only

body force and in an accelerated system. The body (element) is in rest and therefore
the net force is zero

∑

total

F =
∑

surface

F +
∑

body

F (4.6)

Hence, the utilizing the above derivations one can obtain

−gradPdx dy dz + ρ geffdx dy dz = 0 (4.7)

or

gradP = ∇P = ρ geff

Pressure Gradient

(4.8)
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Some refer to equation (4.8) as the Fluid Static Equation. This equation can be
integrated and therefore solved. However, there are several physical implications to this
equation which should be discussed and are presented here. First, a discussion on a
simple condition and will continue in more challenging situations.

4.3 Pressure and Density in a Gravitational Field
In this section, a discussion on the pressure and the density in various conditions is
presented.

4.3.1 Constant Density in Gravitational Field

The simplest case is when the density, ρ, pressure, P , and temperature, T (in a way
no function of the location) are constant. Traditionally, the z coordinate is used as the
(negative) direction of the gravity1. The effective body force is

geff = −g k̂ (4.9)

Utilizing equation (4.9) and substituting it into equation (4.8) results into three
simple partial differential equations. These equations are

∂P

∂x
=

∂P

∂y
= 0 (4.10)

and

∂P

∂z
= −ρg

Pressure Change

(4.11)

Equations (4.10) can be integrated to yield

P (x, y) = constant (4.12)

and constant in equation (4.12) can be absorbed by the integration of equation (4.11)
and therefore

P (x, y, z) = −ρgz + constant (4.13)

The integration constant is determined from the initial conditions or another point.
For example, if at point z0 the pressure is P0 then the equation (4.13) becomes

P (z)− P0 = −ρg(z − z0) (4.14)

1This situation were the tradition is appropriated, it will be used. There are fields where x or y are
designed to the direction of the gravity and opposite direction. For this reason sometime there will be
a deviation from the above statement.
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Constant
Pressure
Lines

Fig. -4.2. Pressure lines in a static fluid with a constant density.

ρ g h

a

Fig. -4.3. A schematic to explain the measure
of the atmospheric pressure.

It is evident from equation (4.13) that the
pressure depends only on z and/or the con-
stant pressure lines are in the plane of x
and y. Figure 4.2 describes the constant
pressure lines in the container under the
gravity body force. The pressure lines are
continuous even in area where there is a
discontinuous fluid. The reason that a
solid boundary doesn’t break the continu-
ity of the pressure lines is because there is
always a path to some of the planes.

It is convenient to reverse the direc-
tion of z to get rid of the negative sign and
to define h as the dependent of the fluid
that is h ≡ −(z − z0) so equation (4.14)
becomes

P (h)− P0 = ρgh

Pressure relationship

(4.15)

In the literature, the right hand side of the equation (4.15) is defined as piezo-
metric pressure.

Example 4.1:
Two chambers tank depicted in Figure 4.4 are in equilibration. If the air mass at
chamber A is 1 Kg while the mass at chamber B is unknown. The difference in the
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h1

h2

h3

Fig. -4.4. The effective gravity is
for accelerated cart.

liquid heights between the two chambers
is 2[m]. The liquid in the two chambers
is water. The area of each chamber is
1[m2]. Calculate the air mass in chamber
B. You can assume ideal gas for the air
and the water is incompressible substance
with density of 1000[kg/m2]. The total
height of the tank is 4[m]. Assume that
the chamber are at the same temperature
of 27◦C.

Solution

The equation of state for the chamber A is

mA =
R T

PA VA
(4.I.a)

The equation of state for the second chamber is

mB =
R T

PB VB
(4.I.b)

The water volume is

Vtotal = h1 A + (h1 + h2)A = (2 h1 + h2)A (4.I.c)

The pressure difference between the liquid interface is estimated negligible the air
density as

PA − PB = ∆P = h2 ρ g (4.I.d)

combining equations (4.I.a), (4.I.b) results in

R T

mA VA
− R T

mB VB
= h2 ρ g =⇒


1− 1

mB

mA

VB

VA


 =

h2 ρ g mA VA

R T
(4.I.e)

In equation the only unknown is the ratio of mB/mA since everything else is known.
Denoting X = mB/mA results in

1
X

= 1− h2 ρ g mA VA

R T
=⇒ X =

1

1− h2 ρ g mA VA

R T

(4.I.f)

End Solution

The following question is a very nice qualitative question of understanding this
concept.

Example 4.2:
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hL
hH

h1

h2

Fig. -4.5. Tank and the effects dif-
ferent liquids.

A tank with opening at the top to the
atmosphere contains two immiscible liq-
uids one heavy and one light as depicted
in Figure 4.5 (the light liquid is on the
top of the heavy liquid). Which piezo-
metric tube will be higher? why? and
how much higher? What is the pressure
at the bottom of the tank?

Solution

The common instinct is to find that the lower tube will contain the higher liquids. For
the case, the lighter liquid is on the top the heavier liquid the the top tube is the same
as the surface. However, the lower tube will raise only to (notice that g is canceled)

hL =
ρ1 h1 + ρ2 h2

ρ2
(4.II.a)

Since ρ1 > ρ1 the mathematics dictate that the height of the second is lower. The
difference is

hH − hL

h2
=

hH

h2
−

(
ρ1 h1 + ρ2 h2

hr21 ρ2

)
(4.II.b)

It can be noticed that hH = h1 + h− 2 hence,

hH − hL

h2
=

h1 + h2

h2
−

(
ρ1 h1 + ρ2 h2

h2 ρ2

)
=

h1

h2

(
1− ρ1

ρ2

)
(4.II.c)

or

hH − hL = h1

(
1− ρ1

ρ2

)
(4.II.d)

The only way the hL to be higher of hH is if the heavy liquid is on the top if the
stability allow it. The pressure at the bottom is

P = Patmos + g (ρ1 h1 + ρ2 h2) (4.16)

End Solution

Example 4.3:
The effect of the water in the car tank is more than the possibility that water freeze
in fuel lines. The water also can change measurement of fuel gage. The way the
interpretation of an automobile fuel gage is proportional to the pressure at the bottom
of the fuel tank. Part of the tank height is filled with the water at the bottom (due to
the larger density). Calculate the error for a give ratio between the fuel density to the
water.
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Solution

The ratio of the fuel density to water density is ς = ρf/ρw and the ratio of the total
height to the water height is x = hw/htotal Thus the pressure at the bottom when the
tank is full with only fuel

Pfull = ρf htotal g (4.III.a)

But when water is present the pressure will be the same at

Pfull = (ρw x + φρf ) g htotal (4.III.b)

and if the two are equal at

ρf »»»htotal ¢g = (ρw x + φρf ) ¢g»»»htotal (4.III.c)

where φ in this case the ratio of the full height (on the fake) to the total height. Hence,

φ =
ρf − x ρw

ρf
(4.III.d)

End Solution

4.3.2 Pressure Measurement

4.3.2.1 Measuring the Atmospheric Pressure

One of the application of this concept is the idea of measuring the atmospheric pressure.
Consider a situation described in Figure 4.3. The liquid is filling the tube and is brought
into a steady state. The pressure above the liquid on the right side is the vapor pressure.
Using liquid with a very low vapor pressure like mercury, will result in a device that can
measure the pressure without additional information (the temperature).

Example 4.4:
Calculate the atmospheric pressure at 20◦C. The high of the Mercury is 0.76 [m] and
the gravity acceleration is 9.82[m/sec]. Assume that the mercury vapor pressure is
0.000179264[kPa]. The description of the height is given in Figure 4.3. The mercury
density is 13545.85[kg/m3].

Solution

The pressure is uniform or constant plane perpendicular to the gravity. Hence, knowing
any point on this plane provides the pressure anywhere on the plane. The atmospheric
pressure at point a is the same as the pressure on the right hand side of the tube.
Equation (4.15) can be utilized and it can be noticed that pressure at point a is

Pa = ρ g h + Pvapor (4.17)
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The density of the mercury is given along with the gravity and therefore,

Pa = 13545.85× 9.82× 0.76 ∼ 101095.39[Pa] ∼ 1.01[Bar]

The vapor pressure is about 1× 10−4 percent of the total results.
End Solution

Gas

valve

h

The pressure, P

1

2

Fig. -4.6. Schematic of gas measurement
utilizing the “U” tube.

The main reason the mercury is used be-
cause of its large density and the fact that it
is in a liquid phase in most of the measure-
ment range. The third reason is the low va-
por (partial) pressure of the mercury. The par-
tial pressure of mercury is in the range of the
0.000001793[Bar] which is insignificant com-
pared to the total measurement as can be ob-
served from the above example.

Example 4.5:
A liquid2 a in amount Ha and a liquid b in
amount Hb in to an U tube. The ratio of the
liquid densities is α = ρ1/ρ2. The width of the
U tube is L. Locate the liquids surfaces.

Solution

The question is to find the equilibrium point where two liquids balance each other. If
the width of the U tube is equal or larger than total length of the two liquids then the
whole liquid will be in bottom part. For smaller width, L, the ratio between two sides
will be as

ρ1 h1 = ρ2 h2 → h2 = α h1

The mass conservation results in

Ha + Hb = L + h1 + h2

Thus two equations and two unknowns provide the solution which is

h1 =
Ha + Hb − L

1 + α

When Ha > L and ρa (Ha − L) ≥ ρb (or the opposite) the liquid a will be on the two
sides of the U tube. Thus, the balance is

h1 ρb + h2 ρa = h3 ρa

where h1 is the height of liquid b where h2 is the height of “extra” liquid a and same
side as liquid b and where h3 is the height of liquid b on the other side. When in this
case h1 is equal to Hb. The additional equation is the mass conservation as

Ha = h2 + L + h3

2This example was requested by several students who found their instructor solution unsatisfactory.
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The solution is

h2 =
(Ha − L) ρa −Hbρb

2 ρa

End Solution

4.3.2.2 Pressure Measurement

ρ1

A1 P1

ρ1

A1 P2

h1

h2A2

ρ2

ρ2

ρ2

ρ1

Fig. -4.7. Schematic of sensitive measurement device.

The idea describes the atmo-
spheric measurement that can be
extended to measure the pressure
of the gas chambers. Consider a
chamber filled with gas needed to
be measured (see Figure 4.6). One
technique is to attached “U” tube
to the chamber and measure the
pressure. This way, the gas is pre-
vented from escaping and its pres-
sure can be measured with a min-
imal interference to the gas (some
gas enters to the tube).

The gas density is significantly lower than the liquid density and therefore can be
neglected. The pressure at point “1” is

P1 = Patmos + ρg h (4.18)

Since the atmospheric pressure was measured previously (the technique was shown
in the previous section) the pressure of the chamber can be measured.

4.3.2.3 Magnified Pressure Measurement

For situations where the pressure difference is very small, engineers invented more sensi-
tive measuring device. This device is build around the fact that the height is a function
of the densities difference. In the previous technique, the density of one side was ne-
glected (the gas side) compared to other side (liquid). This technique utilizes the
opposite range. The densities of the two sides are very close to each other, thus the
height become large. Figure 4.7 shows a typical and simple schematic of such an in-
strument. If the pressure differences between P1 and P2 is small this instrument can
“magnified” height, h1 and provide “better” accuracy reading. This device is based on
the following mathematical explanation.

In steady state, the pressure balance (only differences) is

P1 + g ρ1(h1 + h2) = P2 + g h2 ρ2 (4.19)

It can be noticed that the “missing height” is canceled between the two sides. It can
be noticed that h1 can be positive or negative or zero and it depends on the ratio that
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two containers filled with the light density liquid. Additionally, it can be observed that
h1 is relatively small because A1 >> A2. The densities of the liquid are chosen so that
they are close to each other but not equal. The densities of the liquids are chosen to
be much heavier than the measured gas density. Thus, in writing equation (4.19) the
gas density was neglected. The pressure difference can be expressed as

P1 − P2 = g [ρ2 h2 − ρ1(h1 + h2)] (4.20)

If the light liquid volume in the two containers is known, it provides the relationship
between h1 and h2. For example, if the volumes in two containers are equal then

−h1 A1 = h2 A2 −→ h1 = −h2 A2

A1
(4.21)

Liquid volumes do not necessarily have to be equal. Additional parameter, the volume
ratio, will be introduced when the volumes ratio isn’t equal. The calculations as results
of this additional parameter does not cause a significant complications. Here, this ratio
equals to one and it simplify the equation (4.21). But this ratio can be inserted easily
into the derivations. With the equation for height (4.21) equation (4.19) becomes

P1 − P2 = g h2

(
ρ2 − ρ1

(
1− A2

A1

))
(4.22)

or the height is

h2 =
P1 − P2

g
[
(ρ2 − ρ1) + ρ1

A2
A1

] (4.23)

For the small value of the area ratio, A2/A1 << 1, then equation (4.23) becomes

h2 =
P1 − P2

g (ρ2 − ρ1)
(4.24)

Some refer to the density difference shown in equation (4.24) as “magnification factor”
since it replace the regular density, ρ2.

Inclined Manometer

dy
dℓ

θ

Poutside

P1

Fig. -4.8. Inclined manometer.

One of the old methods of pressure
measurement is the inclined manometer.
In this method, the tube leg is inclined rel-
atively to gravity (depicted in Figure 4.8).
This method is an attempt to increase the
accuracy by “extending” length visible of
the tube. The equation (4.18) is then

P1 − Poutside = ρ g d` (4.25)

If there is a insignificant change in volume (the area ratio between tube and inclined
leg is significant), a location can be calibrated on the inclined leg as zero3.

3This author’s personal experience while working in a ship that use this manometer which is signifi-
cantly inaccurate (first thing to be replaced on the ship). Due to surface tension, caused air entrapment
especially in rapid change of the pressure or height.
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Inverted U-tube manometer

Z Z

h

b
a

1

2

Fig. -4.9. Schematic of inverted
manometer.

The difference in the pressure of two different
liquids is measured by this manometer. This idea is
similar to “magnified” manometer but in reversed.
The pressure line are the same for both legs on line
ZZ. Thus, it can be written as the pressure on left
is equal to pressure on the right legs (see Figure
4.9).

right leg︷ ︸︸ ︷
P2 − ρ2 (b + h) g =

left leg︷ ︸︸ ︷
P1 − ρ1 a− ρ h) g (4.26)

Rearranging equation (4.26) leads to

P2 − P1 = ρ2 (b + h) g − ρ1 a g − ρ h g (4.27)

For the similar density of ρ1 = ρ2 and for a = b
equation (4.27) becomes

P2 − P1 = (ρ1 − ρ) g h (4.28)

As in the previous “magnified” manometer if the density difference is very small the
height become very sensitive to the change of pressure.

4.3.3 Varying Density in a Gravity Field

There are several cases that will be discussed here which are categorized as gases,
liquids and other. In the gas phase, the equation of state is simply the ideal gas model
or the ideal gas with the compressibility factor (sometime referred to as real gas).
The equation of state for liquid can be approximated or replaced by utilizing the bulk
modulus. These relationships will be used to find the functionality between pressure,
density and location.

4.3.3.1 Gas Phase under Hydrostatic Pressure

Ideal Gas under Hydrostatic Pressure

The gas density vary gradually with the pressure. As first approximation, the ideal gas
model can be employed to describe the density. Thus equation (4.11) becomes

∂P

∂z
= − g P

R T
(4.29)

Separating the variables and changing the partial derivatives to full derivative (just a
notation for this case) results in

dP

P
= −g dz

R T
(4.30)
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Equation (4.30) can be integrated from point “0” to any point to yield

ln
P

P0
= − g

R T
(z − z0) (4.31)

It is convenient to rearrange equation (4.31) to the following

P

P0
= e−

„
g(z−zo)

R T

«

(4.32)

Here the pressure ratio is related to the height exponentially. Equation (4.32) can be
expanded to show the difference to standard assumption of constant pressure as

P

P0
= 1−

−h ρ0 g
P0︷ ︸︸ ︷

(z − z0) g

R T
+

(z − z0)
2
g

6 R T
+ · · · (4.33)

Or in a simplified form where the transformation of h = (z − z0) to be

P

P0
= 1 +

ρ0 g

P0


h−

correction factor︷ ︸︸ ︷
h2

6
+ · · ·


 (4.34)

Equation (4.34) is useful in mathematical derivations but should be ignored for practical
use4.

Real Gas under Hydrostatic Pressure

The mathematical derivations for ideal gas can be reused as a foundation for the
real gas model (P = ZρRT ). For a large range of P/Pc and T/Tc, the value of the
compressibility factor, Z, can be assumed constant and therefore can be swallowed into
equations (4.32) and (4.33). The compressibility is defined in equation (2.39). The
modified equation is

P

P0
= e−

„
g (z−zo)

Z R T

«

(4.35)

Or in a series form which is

P

P0
= 1− (z − z0) g

Z R T
+

(z − z0)
2
g

6 Z R T
+ · · · (4.36)

Without going through the mathematics, the first approximation should be noticed
that the compressibility factor, Z enter the equation as h/Z and not just h. Another
point that is worth discussing is the relationship of Z to other gas properties. In general,
the relationship is very complicated and in some ranges Z cannot be assumed constant.
In these cases, a numerical integration must be carried out.

4These derivations are left for a mathematical mind person. These deviations have a limited practical
purpose. However, they are presented here for students who need to answer questions on this issue.
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4.3.3.2 Liquid Phase Under Hydrostatic Pressure

The bulk modulus was defined in equation (1.28). The simplest approach is to assume
that the bulk modulus is constant (or has some representative average). For these cases,
there are two differential equations that needed to be solved. Fortunately, here, only
one hydrostatic equation depends on density equation. So, the differential equation for
density should be solved first. The governing differential density equation (see equation
(1.28)) is

ρ = BT
∂ρ

∂P
(4.37)

The variables for equation (4.37) should be separated and then the integration can be
carried out as

∫ P

P0

dP =
∫ ρ

ρ0

BT
dρ

ρ
(4.38)

The integration of equation (4.38) yields

P − P0 = BT ln
ρ

ρ0
(4.39)

Equation (4.39) can be represented in a more convenient form as

ρ = ρ0e
P−P0

BT

Density variation

(4.40)

Equation (4.40) is the counterpart for the equation of state of ideal gas for the liquid
phase. Utilizing equation (4.40) in equation (4.11) transformed into

∂P

∂z
= −gρ0e

P−P0
BT (4.41)

Equation (4.41) can be integrated to yield

BT

g ρ0
eP−P0

BT = z + Constant (4.42)

It can be noted that BT has units of pressure and therefore the ratio in front of the
exponent in equation (4.42) has units of length. The integration constant, with units
of length, can be evaluated at any specific point. If at z = 0 the pressure is P0 and the
density is ρ0 then the constant is

Constant =
BT

g ρ0
(4.43)
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g ρ0 z
BT

P
−

P
0

B
T

March 11, 2008

Fig. -4.10. Hydrostatic pressure when there is
compressibility in the liquid phase.

This constant, BT /g ρ0, is a typical length
of the problem. Additional discussion
will be presented in the dimensionless is-
sues chapter (currently under construc-
tion). The solution becomes

BT

g ρ0

(
eP−P0

BT − 1
)

= z (4.44)

Or in a dimensionless form

(
eP−P0

BT − 1
)

=
z g ρ0

BT

Density in Liquids

(4.45)

The solution is presented in equation (4.44) and is plotted in Figure 4.10. The solution
is a reverse function (that is not P = f(z) but z = f (P)) it is a monotonous function
which is easy to solve for any numerical value (that is only one z corresponds to any
Pressure). Sometimes, the solution is presented as

P

P0
=

BT

P0
ln

(
g ρ0z

BT
+ 1

)
+ 1 (4.46)

An approximation of equation (4.45) is presented for historical reasons and in
order to compare the constant density assumption. The exponent can be expanded as




piezometric
pressure︷ ︸︸ ︷
(P − P0) +

corrections︷ ︸︸ ︷
BT

2

(
P − P0

BT

)2

+
BT

6

(
P − P0

BT

)3

+ · · ·


 = z g ρ0 (4.47)

It can be noticed that equation (4.47) is reduced to the standard equation when the
normalized pressure ratio, P/BT is small (<< 1). Additionally, it can be observed that
the correction is on the left hand side and not as the “traditional” correction on the
piezometric pressure side.

In Example 1.14 ratio of the density was expressed by equations (1.XIV.l) while
here the ratio is expressed by different equations. The difference between the two
equations is the fact that Example 1.14 use the integral equation without using any
“equation of state.” The method described in the Example 1.14 is more general which
provided a simple solution5. The equation of state suggests that ∂P = g ρ0 f(P ) dz
while the integral equation is ∆P = g

∫
ρ dz where no assumption is made on the

relationship between the pressure and density. However, the integral equation uses the
fact that the pressure is function of location. The comparison between the two methods
will be presented.

Example 4.6:

5This author is not aware of the “equation of state” solution or the integral solution. If you know
of any of these solutions or similar, please pass this information to this author.
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4.3.4 The Pressure Effects Due To Temperature Variations

4.3.4.1 The Basic Analysis

There are situations when the main change of the density results from other effects.
For example, when the temperature field is not uniform, the density is affected and thus
the pressure is a location function (for example, the temperature in the atmostphere is
assumed to be a linear with the height under certain conditions.). A bit more complicate
case is when the gas is a function of the pressure and another parameter. Air can be a
function of the temperature field and the pressure. For the atmosphere, it is commonly
assumed that the temperature is a linear function of the height.

Here, a simple case is examined for which the temperature is a linear function of
the height as

dT

dh
= −Cx (4.48)

where h here referred to height or distance. Hence, the temperature–distance function
can be written as

T = Constant− Cx h (4.49)

where the Constant is the integration constant which can be obtained by utilizing the
initial condition. For h = 0, the temperature is T0 and using it leads to

T = T0 − Cx h

Temp variations

(4.50)

Combining equation (4.50) with (4.11) results in

∂P

∂h
= − g P

R (T0 − Cx h)
(4.51)

Separating the variables in equation (4.51) and changing the formal ∂ to the informal
d to obtain

dP

P
= − g dh

R (T0 − Cx h)
(4.52)

Defining a new variable6 as ξ = (T0 − Cx h) for which ξ0 = T0 − Cx h0 and d/dξ =
−Cx d/dh. Using these definitions results in

dP

P
=

g

RCx

dξ

ξ
(4.53)

6A colleague asked this author to insert this explanation for his students. If you feel that it is too
simple, please, just ignore it.
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After the integration of equation (4.52) and reusing (the reverse definitions) the vari-
ables transformed the result into

ln
P

P0
=

g

R Cx
ln

T0 − Cx h

T0
(4.54)

Or in a more convenient form as

P

P0
=

(
T0 − Cx h

T0

)( g
R Cx

)

Pressure in Atmosphere

(4.55)

It can be noticed that equation (4.55) is a monotonous function which decreases with
height because the term in the brackets is less than one. This situation is roughly
representing the pressure in the atmosphere and results in a temperature decrease.
It can be observed that Cx has a “double role” which can change the pressure ratio.
Equation (4.55) can be approximated by two approaches/ideas. The first approximation
for a small distance, h, and the second approximation for a small temperature gradient.
It can be recalled that the following expansions are

P

P0
= lim

h−>0

(
1− Cx

T0
h

) g
R Cx

= 1−

g h ρ0
P0︷ ︸︸ ︷
g h

T0 R
−

correction factor︷ ︸︸ ︷(
R g Cx − g2

)
h2

2 T0
2 R2 − ... (4.56)

Equation (4.56) shows that the first two terms are the standard terms (negative sign is
as expected i.e. negative direction). The correction factor occurs only at the third term
which is important for larger heights. It is worth to point out that the above statement
has a qualitative meaning when additional parameter is added. However, this kind of
analysis will be presented in the dimensional analysis chapter7.

The second approximation for small Cx is

P

P0
= lim

Cx−>0

(
1− Cx

T0
h

) g
R Cx

= e− g h
R T0 − g h2 Cx

2 T0
2 R

e− g h
R T0 − ... (4.57)

Equation (4.57) shows that the correction factor (lapse coefficient), Cx, influences at
only large values of height. It has to be noted that these equations (4.56) and (4.57)
are not properly represented without the characteristic height. It has to be inserted to
make the physical significance clearer.

Equation (4.55) represents only the pressure ratio. For engineering purposes, it
is sometimes important to obtain the density ratio. This relationship can be obtained
from combining equations (4.55) and (4.50). The simplest assumption to combine these

7These concepts are very essential in all the thermo–fluid science. I am grateful to my adviser
E.R.G. Eckert who was the pioneer of the dimensional analysis in heat transfer and was kind to show
me some of his ideas.
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equations is by assuming the ideal gas model, equation (2.25), to yield

ρ

ρ0
=

P T0

P0 T
=

P
P0︷ ︸︸ ︷(

1− Cx h

T0

)( g
R Cx

)

T0
T︷ ︸︸ ︷(

1 +
Cx h

T

)
(4.58)

Advance material can be skipped

4.3.4.2 The Stability Analysis

h + dh

h

Fig. -4.11. Two adjoin layers for stability analysis.

It is interesting to study whether
this solution (4.55) is stable and if so
under what conditions. Suppose that
for some reason, a small slab of ma-
terial moves from a layer at height, h,
to layer at height h + dh (see Figure
4.11) What could happen? There are
two main possibilities one: the slab
could return to the original layer or two: stay at the new layer (or even move further,
higher heights). The first case is referred to as the stable condition and the second
case referred to as the unstable condition. The whole system falls apart and does not
stay if the analysis predicts unstable conditions. A weak wind or other disturbances can
make the unstable system to move to a new condition.

This question is determined by the net forces acting on the slab. Whether these
forces are toward the original layer or not. The two forces that act on the slab are
the gravity force and the surroundings pressure (buoyant forces). Clearly, the slab
is in equilibrium with its surroundings before the movement (not necessarily stable).
Under equilibrium, the body forces that acting on the slab are equal to zero. That is,
the surroundings “pressure” forces (buoyancy forces) are equal to gravity forces. The
buoyancy forces are proportional to the ratio of the density of the slab to surrounding
layer density. Thus, the stability question is whether the slab density from layer h, ρ

′
(h)

undergoing a free expansion is higher or lower than the density of the layer h + dh. If
ρ
′
(h) > ρ(h+dh) then the situation is stable. The term ρ

′
(h) is slab from layer h that

had undergone the free expansion.

The reason that the free expansion is chosen to explain the process that the slab
undergoes when it moves from layer h to layer h + dh is because it is the simplest. In
reality, the free expansion is not far way from the actual process. The two processes
that occurred here are thermal and the change of pressure (at the speed of sound).
The thermal process is in the range of [cm/sec] while the speed of sound is about
300 [m/sec]. That is, the pressure process is about thousands times faster than the
thermal process. The second issue that occurs during the “expansion” is the shock (in
the reverse case [h + dh] → h). However, this shock is insignificant (check book on
Fundamentals of Compressible Flow Mechanics by this author on the French problem).
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The slab density at layer h+dh can be obtained using equation (4.58) as following

ρ(h + dh)
ρ(h)

=
P T0

P0 T
=

(
1− Cx dh

T0

)( g
R Cx

)(
1 +

Cx dh

T

)
(4.59)

The pressure and temperature change when the slab moves from layer at h to layer
h+dh. The process, under the above discussion and simplifications, can be assumed to
be adiabatic (that is, no significant heat transfer occurs in the short period of time). The
little slab undergoes isentropic expansion as following for which (see equation (2.25))

ρ′(h + dh)
ρ(h)

=
(

P ′(h + dh)
P (h)

)1/k

(4.60)

When the symbol ′ denotes the slab that moves from layer h to layer h + dh. The
pressure ratio is given by equation (4.55) but can be approximated by equation (4.56)
and thus

ρ′(h + dh)
ρ(h)

=
(

1− gdh

T (h) R

)1/k

(4.61)

Again using the ideal gas model for equation (4.62) transformed into

ρ′(h + dh)
ρ(h)

=
(

1− ρ gdh

P

)1/k

(4.62)

Expanding equation (4.62) in Taylor series results in

(
1− ρ gdh

P

)1/k

= 1− g ρ dh

P k
−

(
g2 ρ2 k − g2 ρ2

)
dh2

2 P 2 k2
− ... (4.63)

The density at layer h + dh can be obtained from (4.59) and then it is expanded
in taylor series as

ρ(h + dh)
ρ(h)

=
(

1− Cx dh

T0

)( g
R Cx

)(
1 +

Cx dh

T

)
∼ 1−

(
g ρ

P
− Cx

T

)
dh + · · · (4.64)

The comparison of the right hand terms of equations (4.64) and (4.63) provides
the conditions to determine the stability.

From a mathematical point of view, to keep the inequality for a small dh only the
first term need to be compared as

g ρ

P k
>

g ρ

P
− Cx

T
(4.65)
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After rearrangement of the inequality (4.65) and using the ideal gas identity, it trans-
formed to

Cx

T
>

(k − 1) g ρ

k P

Cx <
k − 1

k

g

R
(4.66)

The analysis shows that the maximum amount depends on the gravity and gas
properties. It should be noted that this value should be changed a bit since the k should
be replaced by polytropic expansion n. When lapse rate Cx is equal to the right hand
side of the inequality, it is said that situation is neutral. However, one has to bear in
mind that this analysis only provides a range and isn’t exact. Thus, around this value
additional analysis is needed 8.

One of the common question this author has been asked is about the forces
of continuation. What is the source of the force(s) that make this situation when
unstable continue to be unstable? Supposed that the situation became unstable and
the layers have been exchanged, would the situation become stable now? One has to
remember that temperature gradient forces continuous heat transfer which the source
temperature change after the movement to the new layer. Thus, the unstable situation
is continuously unstable.

4.3.5 Gravity Variations Effects on Pressure and Density

r

rb

Pb ρb

g ∝ r
2

Fig. -4.12. The varying gravity effects
on density and pressure.

Until now the study focus on the change of density
and pressure of the fluid. Equation (4.11) has two
terms on the right hand side, the density, ρ and
the body force, g. The body force was assumed
until now to be constant. This assumption must be
deviated when the distance from the body source
is significantly change. At first glance, the body
force is independent of the fluid. The source of
the gravity force in gas is another body, while the
gravity force source in liquid can be the liquid itself.
Thus, the discussion is separated into two different
issues. The issues of magnetohydrodynamics are
too advance for undergraduate student and therefore,will not be introduced here.

4.3.5.1 Ideal Gas in Varying Gravity

In physics, it was explained that the gravity is a function of the distance from the center
of the plant/body. Assuming that the pressure is affected by this gravity/body force.
The gravity force is reversely proportional to r2. The gravity force can be assumed that
for infinity, r → ∞ the pressure is about zero. Again, equation (4.11) can be used

8The same issue of the floating ice. See example for the floating ice in cup.
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(semi one directional situation) when r is used as direction and thus

∂P

∂r
= −ρ

G

r2
(4.67)

where G denotes the general gravity constant. The regular method of separation is
employed to obtain

∫ P

Pb

dP

P
= − G

RT

∫ r

rb

dr

r2
(4.68)

where the subscript b denotes the conditions at the body surface. The integration of
equation (4.68) results in

ln
P

Pb
= − G

RT

(
1
rb
− 1

r

)
(4.69)

Or in a simplified form as

ρ

ρb
=

P

Pb
= e− G

RT
r−rb

r rb (4.70)

Equation (4.70) demonstrates that the pressure is reduced with the distance. It can be
noticed that for r → rb the pressure is approaching P → Pb. This equation confirms
that the density in outer space is zero ρ(∞) = 0. As before, equation (4.70) can be
expanded in Taylor series as

ρ

ρb
=

P

Pb
=

standard︷ ︸︸ ︷
1− G (r − rb)

R T
−

correction factor︷ ︸︸ ︷(
2 GR T + G2 rb

)
(r − rb)

2

2 rb (R T )2
+ ...

(4.71)

Notice that G isn’t our beloved and familiar g and also that Grb/RT is a dimensionless
number (later in dimensionless chapter about it and its meaning).

4.3.5.2 Real Gas in Varying Gravity

The regular assumption of constant compressibility, Z, is employed. It has to remember
when this assumption isn’t accurate enough, numerical integration is a possible solution.
Thus, equation (4.68) is transformed into

∫ P

Pb

dP

P
= − G

Z R T

∫ r

rb

dr

r2
(4.72)

With the same process as before for ideal gas case, one can obtain

ρ

ρb
=

P

Pb
= e− G

Z R T
r−rb

r rb (4.73)

Equation (4.70) demonstrates that the pressure is reduced with the distance. It can be
observed that for r → rb the pressure is approaching P → Pb. This equation confirms
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that the density in outer space is zero ρ(∞) = 0. As before Taylor series for equation
(4.70) is

ρ

ρb
=

P

Pb
=

standard︷ ︸︸ ︷
1− G (r − rb)

Z R T
−

correction factor︷ ︸︸ ︷(
2 GZ R T + G2 rb

)
(r − rb)

2

2 rb (Z R T )2
+ ...

(4.74)

It can be noted that compressibility factor can act as increase or decrease of the ideal
gas model depending on whether it is above one or below one. This issue is related to
Pushka equation that will be discussed later.

4.3.5.3 Liquid Under Varying Gravity

For comparison reason consider the deepest location in the ocean which is about 11,000
[m]. If the liquid “equation of state” (4.40) is used with the hydrostatic fluid equation
results in

∂P

∂r
= −ρ0e

P−P0
BT

G

r2
(4.75)

which the solution of equation (4.75) is

eP0−P
BT = Constant− BT g ρ0

r
(4.76)

Since this author is not aware to which practical situation this solution should be
applied, it is left for the reader to apply according to problem, if applicable.

4.3.6 Liquid Phase

While for most practical purposes, the Cartesian coordinates provides sufficient treat-
ment to the problem, there are situations where the spherical coordinates must be
considered and used.

Derivations of the fluid static in spherical coordinates are

1
r2

d

dr

(
r2

ρ

dP

dr

)
+ 4 π Gρ = 0

Pressure Spherical Coordinates

(4.77)

Or in a vector form as

∇ •
(

1
ρ
∇P

)
+ 4 π Gρ = 0 (4.78)
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4.4 Fluid in a Accelerated System
Up to this stage, body forces were considered as one-dimensional. In general, the
linear acceleration have three components as opposed to the previous case of only
one. However, the previous derivations can be easily extended. Equation (4.8) can
be transformed into a different coordinate system where the main coordinate is in the
direction of the effective gravity. Thus, the previous method can be used and there
is no need to solve new three (or two) different equations. As before, the constant
pressure plane is perpendicular to the direction of the effective gravity. Generally the
acceleration is divided into two categories: linear and angular and they will be discussed
in this order.

4.4.1 Fluid in a Linearly Accelerated System

For example, in a two dimensional system, for the effective gravity

geff = a î + g k̂ (4.79)

where the magnitude of the effective gravity is

|geff | =
√

g2 + a2 (4.80)

and the angle/direction can be obtained from

tanβ =
a

g
(4.81)

Perhaps the best way to explain the linear acceleration is by examples. Consider
the following example to illustrate the situation.

Example 4.7:

g

a

geff

27.1

5




m

sec





Fig. -4.13. The effective gravity is
for accelerated cart.

A tank filled with liquid is accelerated at
a constant acceleration. When the accel-
eration is changing from the right to the
left, what happened to the liquid surface?
What is the relative angle of the liquid
surface for a container in an accelerated
system of a = 5[m/sec]?

Solution

This question is one of the traditional question of the fluid static and is straight forward.
The solution is obtained by finding the effective angle body force. The effective angle
is obtained by adding vectors. The change of the acceleration from the right to left is
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like subtracting vector (addition negative vector). This angle/direction can be found
using the following

tan−1 β = tan−1 a

g
=

5
9.81

∼ 27.01◦

The magnitude of the effective acceleration is

|geff | =
√

52 + 9.812 = 11.015[m/sec2]

End Solution

Example 4.8:
A cart partially filled with liquid and is sliding on an inclined plane as shown in Figure
4.14. Calculate the shape of the surface. If there is a resistance, what will be the angle?
What happen when the slope angle is straight (the cart is dropping straight down)?

F 
(a
)

β

Fig. -4.14. A cart slide on inclined plane.

Solution

(a)

The angle can be found when the acceleration

of the cart is found. If there is no resistance,
the acceleration in the cart direction is deter-
mined from

a = g sinβ (4.82)

The effective body force is acting perpendicu-
lar to the slope. Thus, the liquid surface is parallel to the surface of the inclination
surface.

End Solution

(b)

In case of resistance force (either of friction due to the air or resistance in the
wheels) reduces the acceleration of the cart. In that case the effective body moves
closer to the gravity forces. The net body force depends on the mass of the liquid and
the net acceleration is

a = g − Fnet

m
(4.83)

The angle of the surface, α < β, is now

tanα =
g − Fnet

m

g cosβ
(4.84)

(c)
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geff

g

β

β
a

g sin β −
Fnet

m

α
su
rf
ac
e 
wi
th
 f
ri
ct
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n

Fig. -4.15. Forces diagram of cart slid-
ing on inclined plane.

In the case when the angle of the inclination
turned to be straight (direct falling) the effective
body force is zero. The pressure is uniform in the
tank and no pressure difference can be found. So,
the pressure at any point in the liquid is the same
and equal to the atmospheric pressure.

4.4.2 Angular Acceleration Systems:
Constant Density

For simplification reasons, the first case deals with a rotation in a perpendicular to the
gravity. That effective body force can be written as

geff = −g k̂ + ω2r r̂ (4.85)

center of
circulation

unit
mass

g

ω
2
r

geff

r

z

Fig. -4.16. Schematic to explain the angular
angle.

The lines of constant pressure are
not straight lines but lines of parabolic
shape. The angle of the line depends on
the radius as

dz

dr
= − g

ω2r
(4.86)

Equation (4.86) can be integrated as

z − z0 =
ω2 r2

2 g
(4.87)

Notice that the integration constant was substituted by z0. The constant pressure
will be along

P − P0 = ρg

[
(z0 − z) +

ω2 r2

2 g

]Angular Acceleration System

(4.88)

To illustrate this point, example 4.9 is provided.

Example 4.9:
A “U” tube with a length of (1+x)L is rotating at angular velocity of ω. The center of
rotation is a distance, L from the “left” hand side. Because the asymmetrical nature of
the problem there is difference in the heights in the U tube arms of S as shown in Figure
4.17. Expresses the relationship between the different parameters of the problem.

Solution
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Rotation
center co

ns
ta

nt
 p
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e 
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e

xLL

ω

S

dA

Calculation of 
the correction
factor

Fig. -4.17. Schematic angular angle to explain example 4.9.

It is first assumed the height is uniform at the tube (see for the open question on this
assumption). The pressure at the interface at the two sides of the tube is same. Thus,
equation (4.87) represent the pressure line. Taking the “left” wing of U tube

change in z direction︷ ︸︸ ︷
zl − z0 =

change in r direction︷ ︸︸ ︷
ω2 L2

2 g

The same can be said for the other side

zr − z0 =
ω2 x2 L2

2 g

Thus subtracting the two equations above from each each other results in

zr − zl =
Lω2

(
1− x2

)

2 g

It can be noticed that this kind equipment can be used to find the gravity.
End Solution

Example 4.10:
Assume the diameter of the U tube is Rt. What will be the correction factor if the
curvature in the liquid in the tube is taken in to account. How would you suggest to
define the height in the tube?

Solution

In Figure 4.17 shows the infinitesimal area used in these calculations. The distance of
the infinitesimal area from the rotation center is ?. The height of the infinitesimal area
is ?. Notice that the curvature in the two sides are different from each other. The
volume above the lower point is ? which is only a function of the geometry.

End Solution

Example 4.11:
In the U tube in example 4.9 is rotating with upper part height of `. At what rotating
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velocity liquid start to exit the U tube? If the rotation of U tube is exactly at the center,
what happen the rotation approach very large value?

Advance material can be skipped

4.4.3 Fluid Statics in Geological System

This author would like to express his gratitude to

Ralph Menikoff for suggesting this topic.

In geological systems such as the Earth provide cases to be used for fluid static for
estimating pressure. It is common in geology to assume that the Earth is made of
several layers. If this assumption is accepted, these layers assumption will be used to
do some estimates. The assumption states that the Earth is made from the following
layers: solid inner core, outer core, and two layers in the liquid phase with a thin crust.
For the purpose of this book, the interest is the calculate the pressure at bottom of
the liquid phase. This explaination is provided to understand how to use the

Fig. -4.18. Earth layers not to scale.9

bulk modulus and the effect of rotation. In reality, there might be an additional effects
which affecting the situation but these effects are not the concern of this discussion.

Two different extremes can recognized in fluids between the outer core to the
crust. In one extreme is the equator which the rotation play the most significant role.

9The image was drawn by Shoshana Bar-Meir, inspired from image made by user Surachit
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In the other extreme north–south does not play any effect since the radius is relatively
very small. In that case, the pressure at the bottom of the liquid layer can be estimated
using the equation (4.45) or in approximation of equation (1.XIV.j). In this case it also
can be noticed that g is a function of r. If the bulk modulus is assumed constant (for
simplicity) governing equation can be constructed starting with equation (1.28). The
approximate definition of the bulk modulus is

BT =
ρ ∆P

∆ρ
=⇒ ∆ρ =

ρ ∆P

BT
(4.89)

Using equation to express the pressure difference (see Example 1.14 for details expla-
nation) as

ρ(r) =
ρ0

1−
∫ r

R0

g(r)ρ(r)
BT (r)

dr

(4.90)

In equation (4.90) it is assumed that BT is a function of pressure and the pressure is
a function of the location. Thus, the bulk modulus can be written as a function of the
radius, r. Again, for simplicity the bulk modulus is assumed to be constant. Hence,

ρ(r) =
ρ0

1− 1
BT

∫ r

R0

g(r)ρ(r)dr

(4.91)

The governing equation can be written using the famous relation for the gravity as

ρ0

ρ(r)
= 1− 1

BT

∫ r

R0

G

r2
ρ(r)dr (4.92)

Equation (4.92) is a relatively simple (Fredholm) integral equation. The solution of
this equation obtained by differentiation as

ρ0

ρ2

d ρ

dr
+

G

r2
ρ = 0 (4.93)

Under variables separation the equation changes to
∫ ρ

ρ0

ρ0

ρ3
d ρ = −

∫ r

R0

G dr

r2
(4.94)

The solution of equation (4.94) is

ρ0

2

(
1

ρ0
2
− 1

ρ2

)
= G

(
1

R0
− 1

r

)
(4.95)

or

ρ =

√√√√√
1(

1
ρ0

2
− 2 G

ρ0

(
1

R0
− 1

r

)) (4.96)
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These equations (4.95) and (4.96) referred to as expanded Pushka equation. The
pressure can be calculated since the density is found as

∆P =
G

BT

-
-

r

R0

1(
1

ρ0
2
− 2 G

ρ0

(
1

R0
− 1

r

)) dr

r2
(4.97)

The integral can evaluated numerically or analytically as

∆P = −
ρ0 log

(
(2 ρ0 G + r) R0 − 2 r ρ0 G

r ρ0
2 R0

)

2 G
− ρ0 log (ρ0)

G
(4.98)

The other issue that related to this topic is, What is the pressure at the equator
when the rotation is taken into account. The rotation affects the density since the
pressure changes. Thus, mathematical complications caused by the coupling creates
additionally difficulty. The integral in equation (4.92) has to include the rotation effects.
It can be noticed that the rotation acts in the opposite direction to the gravity. The
pressure difference is

∆P =
∫ r

R0

ρ

(
G

r2
− ω r2

)
dr (4.99)

Thus the approximated density ratio can be written as

ρ0

ρ
= 1− 1

BT

∫ r

R0

ρ

(
G

r2
− ω r2

)
dr (4.100)

Taking derivative of the two sides results in

−ρ0

ρ3
=

1
BT

(
G

r2
− ω r2

)
dr = 0 (4.101)

Integrating equation (4.101)

ρ0

2 ρ2
=

1
BT

(−G

r
− ω r3

3

)
(4.102)

Where the pressure is obtained by integration as previously was done. The conclusion
is that the pressure at the “equator” is substantially lower than the pressure in the north
or the south “poles” of the solid core. The pressure difference is due to the large radius.
In the range between the two extreme, the effect of rotation is reduced because the
radius is reduced. In real liquid, the flow is much more complicated because it is not
stationary but have cells in which the liquid flows around. Nevertheless, this analysis
gives some indication on the pressure and density in the core.

End Advance material
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4.5 Fluid Forces on Surfaces
The forces that fluids (at static conditions) extracts on surfaces are very important for
engineering purposes. This section deals with these calculations. These calculations are
divided into two categories, straight surfaces and curved surfaces.

4.5.1 Fluid Forces on Straight Surfaces

A motivation is needed before going through the routine of derivations. Initially, a
simple case will be examined. Later, how the calculations can be simplified will be
shown.

Example 4.12:
Consider a rectangular shape gate as shown in Figure 4.19. Calculate the minimum
forces, F1 and F2 to maintain the gate in position. Assuming that the atmospheric
pressure can be ignored.

Solution

F2

F1

A-A ℓ = 5[m]

β = 50◦

A-A
a[m]

b[m]

"0"

h

dξξ

ξ

Fig. -4.19. Rectangular area under pressure.

The forces can be calculated by looking at
the moment around point “O.” The ele-
ment of moment is a dξ for the width of
the gate and is

dM =

dF︷ ︸︸ ︷
P a dξ︸︷︷︸

dA

(` + ξ)

The pressure, P can be expressed as a
function ξ as the following

P = g ρ (` + ξ)sinβ

The liquid total moment on the gate is

M =
∫ b

0

g ρ (` + ξ) sin β a dξ(` + ξ)

The integral can be simplified as

M = g a ρ sin β

∫ b

0

(` + ξ)2dξ (4.103)

The solution of the above integral is

M = g ρ a sin β

(
3 b l2 + 3 b2 l + b3

3

)
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This value provides the moment that F1 and F2 should extract. Additional equation is
needed. It is the total force, which is

Ftotal =
∫ b

0

g ρ (` + ξ) sin β a dξ

The total force integration provides

Ftotal = g ρ a sin β

∫ b

0

(` + ξ)dξ = g ρ a sin β

(
2 b ` + b2

2

)

The forces on the gate have to provide

F1 + F2 = g ρ a sin β

(
2 b ` + b2

2

)

Additionally, the moment of forces around point “O” is

F1 ` + F2(` + b) = g ρ a sin β

(
3 b l2 + 3 b2 l + b3

3

)

The solution of these equations is

F1 =
(3 ` + b) a b g ρ sin β

6

F2 =
(3 ` + 2 b) a b g ρ sin β

6
End Solution

ξ
dξ

ξ

ξ
ℓ0

ℓ1

"O"

β

Fig. -4.20. Schematic of submerged area to
explain the center forces and moments.

The above calculations are time con-
suming and engineers always try to make
life simpler. Looking at the above calcu-
lations, it can be observed that there is
a moment of area in equation (4.103) and
also a center of area. These concepts have
been introduced in Chapter 3. Several rep-
resented areas for which moment of inertia
and center of area have been tabulated in
Chapter 3. These tabulated values can be used to solve this kind of problems.

Symmetrical Shapes

Consider the two–dimensional symmetrical area that are under pressure as shown
in Figure 4.20. The symmetry is around any axes parallel to axis x. The total force and
moment that the liquid extracting on the area need to be calculated. First, the force is

F =
∫

A

PdA =
∫

(Patmos + ρgh)dA = APatmos + ρg

∫ `1

`0

h(ξ)︷ ︸︸ ︷
(ξ + `0) sin β dA

(4.104)



4.5. FLUID FORCES ON SURFACES 101

In this case, the atmospheric pressure can include any additional liquid layer above
layer “touching” area. The “atmospheric” pressure can be set to zero.

The boundaries of the integral of equation (4.104) refer to starting point and
ending points not to the start area and end area. The integral in equation (4.104) can
be further developed as

Ftotal = APatmos + ρ g sin β


`0 A +

xc A︷ ︸︸ ︷∫ `1

`0

ξdA


 (4.105)

In a final form as

Ftotal = A [Patmos + ρ g sin β (`0 + xc)]
Total Force in Inclined Surface

(4.106)

ξ0

"O"

β

F1

F2

a

b

ξ1

y

Fig. -4.21. The general forces acting
on submerged area.

The moment of the liquid on the area around
point “O” is

My =
∫ ξ1

ξ0

P (ξ)ξdA (4.107)

My =
∫ ξ1

ξ0

(Patmos + g ρ

ξ sin β︷︸︸︷
h(ξ) )ξdA (4.108)

Or separating the parts as

My = Patmos

xc A︷ ︸︸ ︷∫ ξ1

ξ0

ξdA +g ρ sin β

I
x
′
x
′︷ ︸︸ ︷∫ ξ1

ξ0

ξ2dA (4.109)

The moment of inertia, Ix′x′ , is about the axis through point “O” into the page.
Equation (4.109) can be written in more compact form as

My = Patmos xc A + g ρ sin βIx′x′

Total Moment in Inclined Surface

(4.110)

Example 4.12 can be generalized to solve any two forces needed to balance the area/gate.
Consider the general symmetrical body shown in figure 4.21 which has two forces that
balance the body. Equations (4.106) and (4.110) can be combined the moment and
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force acting on the general area. If the “atmospheric pressure” can be zero or include
additional layer of liquid. The forces balance reads

F1 + F2 = A [Patmos + ρ g sin β (`0 + xc)] (4.111)

and moments balance reads

F1 a + F2 b = Patmos xc A + g ρ sin βIx′x′ (4.112)

The solution of these equations is

F1 =

[(
ρ sin β − Patmos

g b

)
xc + `0 ρ sin β + Patmos

g

]
bA−, Ix′x′ ρ sin β

g (b− a)
(4.113)

and

F2 =
Ix′x′ ρ sinβ −

[(
ρ sin β − Patmos

g a

)
xc + `0 ρ sin β + Patmos

g

]
aA

g (b− a)
(4.114)

In the solution, the forces can be negative or positive, and the distance a or b can
be positive or negative. Additionally, the atmospheric pressure can contain either an
additional liquid layer above the “touching” area or even atmospheric pressure simply
can be set up to zero. In symmetrical area only two forces are required since the
moment is one dimensional. However, in non–symmetrical area there are two different
moments and therefor three forces are required. Thus, additional equation is required.
This equation is for the additional moment around the x axis (see for explanation in
Figure 4.22). The moment around the y axis is given by equation (4.110) and the total
force is given by (4.106). The moment around the x axis (which was arbitrary chosen)
should be

Mx =
∫

A

y PdA (4.115)

Substituting the components for the pressure transforms equation (4.115) into

Mx =
∫

A

y (Patmos + ρ g ξ sin β) dA (4.116)

The integral in equation (4.115) can be written as

Mx = Patmos

A yc︷ ︸︸ ︷∫

A

y dA +ρ g sin β

I
x
′
y
′︷ ︸︸ ︷∫

A

ξ y dA (4.117)

The compact form can be written as

Mx = Patmos Ayc + ρ g sin β Ix′y′

Moment in Inclined Surface

(4.118)
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y

x

dA y

ξ

Fig. -4.22. The general forces acting on non sym-
metrical straight area.

The product of inertia was presented
in Chapter 3. These equations
(4.106), (4.110) and (4.118) provide
the base for solving any problem for
straight area under pressure with uni-
form density. There are many combi-
nations of problems (e.g. two forces
and moment) but no general solution
is provided. Example to illustrate the
use of these equations is provided.

Example 4.13:
Calculate the forces which required to balance the triangular shape shown in the Figure
4.23.

Solution

The three equations that needs to be solved are

F1 + F2 + F3 = Ftotal (4.119)

The moment around x axis is

F1 b = My (4.120)

The moment around y axis is

F1 `1 + F2 (a + `0) + F3 `0 = Mx (4.121)

The right hand side of these equations are given before in equations (4.106), (4.110)
and (4.118).

The moment of inertia of the triangle around x is made of two triangles (as shown
in the Figure (4.23) for triangle 1 and 2). Triangle 1 can be calculated as the moment of
inertia around its center which is `0+2∗(`1−`0)/3. The height of triangle 1 is (`1−`0)
and its width b and thus, moment of inertia about its center is Ixx = b(`1 − `0)3/36.
The moment of inertia for triangle 1 about y is

Ixx1 = b(`1−`0)
3

36 +

A1︷ ︸︸ ︷
b(`1−`0)

3

∆x1
2︷ ︸︸ ︷(

`0 + 2(`1−`0)
3

)2

The height of the triangle 2 is a − (`1 − `0) and its width b and thus, the moment of
inertia about its center is

Ixx2 = b[a−(`1−`0)]
3

36 +

A2︷ ︸︸ ︷
b[a−(`1−`0)]

3

∆x2
2︷ ︸︸ ︷(

`1 + [a−(`1−`0)]
3

)2
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y

x

b

a

ℓ0

F1

F2

F3

ℓ1

1

2

Fig. -4.23. The general forces acting on a non
symmetrical straight area.

and the total moment of inertia

Ixx = Ixx1 + Ixx2

The product of inertia of the triangle can
be obtain by integration. It can be no-
ticed that upper line of the triangle is

y = (`1−`0)x
b + `0. The lower line of the

triangle is y = (`1−`0−a)x
b + `0 + a.

Ixy =
∫ b

0




∫ (`1−`0−a)x
b +`0+a

(`1−`0)x
b +`0

x y dx


 dy = 2 a b2 `1+2 a b2 `0+a2 b2

24

The solution of this set equations is

F1 =

A︷ ︸︸ ︷[
a b

3

]
(g (6 `1 + 3 a) + 6 g `0) ρ sin β + 8 Patmos

24
,

F2[
a b
3

] = −

„
(3 `1−14 a)−`0

„
12 `1

a −27

«
+

12 `0
2

a

«
g ρ sin β

72 −
„„

24 `1
a −24

«
+

48 `0
a

«
Patmos

72 ,

F3[
a b
3

] =

„„
a− 15 `1

a

«
+`0

„
27− 12 `1

a

«
+

12 `0
2

a

«
g ρ sin β

72

+

„„
24 `1

a +24

«
+

48 `0
a

«
Patmos

72

End Solution

4.5.1.1 Pressure Center

In the literature, pressure centers are commonly defined. These definitions are math-
ematical in nature and has physical meaning of equivalent force that will act through
this center. The definition is derived or obtained from equation (4.110) and equation
(4.118). The pressure center is the distance that will create the moment with the
hydrostatic force on point “O.” Thus, the pressure center in the x direction is

xp =
1
F

∫

A

xP dA (4.122)

In the same way, the pressure center in the y direction is defined as

yp =
1
F

∫

A

y P dA (4.123)
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To show relationship between the pressure center and the other properties, it can be
found by setting the atmospheric pressure and `0 to zero as following

xp =
g ρ sinβ Ix′x′

Aρg sin β xc
(4.124)

Expanding Ix′x′ according to equation (3.17) results in

xp =
Ixx

xc A
+ xc (4.125)

and in the same fashion in y direction

yp =
Ixy

yc A
+ yc (4.126)

It has to emphasis that these definitions are useful only for case where the atmospheric
pressure can be neglected or canceled and where `0 is zero. Thus, these limitations
diminish the usefulness of pressure center definitions. In fact, the reader can find that
direct calculations can sometimes simplify the problem.

4.5.1.2 Multiply Layers

In the previous sections, the density was assumed to be constant. For non constant
density the derivations aren’t “clean” but are similar. Consider straight/flat body that
is under liquid with a varying density10. If density can be represented by average density,
the force that is acting on the body is

GeogologicalFtotal =
∫

A

g ρ h dA ∼ ρ̄

∫

A

g h dA (4.127)

In cases where average density cannot be represented reasonably11, the integral has be
carried out. In cases where density is non–continuous, but constant in segments, the
following can be said

Ftotal =
∫

A

g ρ h dA =
∫

A1

g ρ1 h dA +
∫

A2

g ρ2 h dA + · · ·+
∫

An

g ρn h dA (4.128)

As before for single density, the following can be written

Ftotal = g sin β


ρ1

xc1 A1︷ ︸︸ ︷∫

A1

ξ dA +ρ2

xc2 A2︷ ︸︸ ︷∫

A2

ξ dA + · · ·+ ρn

xcn An︷ ︸︸ ︷∫

An

ξ dA


 (4.129)

10This statement also means that density is a monotonous function. Why? Because of the buoyancy
issue. It also means that the density can be a non-continuous function.

11A qualitative discussion on what is reasonably is not presented here, However, if the variation of
the density is within 10% and/or the accuracy of the calculation is minimal, the reasonable average
can be used.
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Or in a compact form and in addition considering the “atmospheric” pressure can be
written as

Ftotal = Patmos Atotal + g sin β

n∑

i=1

ρi xci Ai

Total Static Force

(4.130)

where the density, ρi is the density of the layer i and Ai and xci are geometrical
properties of the area which is in contact with that layer. The atmospheric pressure can
be entered into the calculation in the same way as before. Moreover, the atmospheric
pressure can include all the layer(s) that do(es) not with the “contact” area.

The moment around axis y, My under the same considerations as before is

My =
∫

A

g ρ ξ2 sinβ dA (4.131)

After similar separation of the total integral, one can find that

My = g sinβ

n∑

i=1

ρi Ix′x′ i (4.132)

If the atmospheric pressure enters into the calculations one can find that

My = Patmos xc Atotal + g sinβ

n∑

i=1

ρi Ix′x′ i

Total Static Moment

(4.133)

In the same fashion one can obtain the moment for x axis as

Mx = Patmos yc Atotal + g sin β

n∑

i=1

ρi Ix′y′ i

Total Static Moment

(4.134)

To illustrate how to work with these equations the following example is provided.

Example 4.14:
Consider the hypothetical Figure 4.24. The last layer is made of water with den-
sity of 1000[kg/m3]. The densities are ρ1 = 500[kg/m3], ρ2 = 800[kg/m3], ρ3 =
850[kg/m3], and ρ4 = 1000[kg/m3]. Calculate the forces at points a1 and b1. Assume
that the layers are stables without any movement between the liquids. Also neglect all
mass transfer phenomena that may occur. The heights are: h1 = 1[m], h2 = 2[m],
h3 = 3[m],and h4 = 4[m]. The forces distances are a1 = 1.5[m], a2 = 1.75[m], and
b1 = 4.5[m]. The angle of inclination is is β = 45◦.
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ρ1

"O"

β

F1

F2

a1

b1

y

ρ2

ρ3

ρ4

h4

ρ4

h3
h2

h1

ℓ

b2

a2

Fig. -4.24. The effects of multi layers density on static
forces.

Solution

Since there are only two un-
knowns, only two equations are
needed, which are (4.133) and
(4.130). The solution method of
this example is applied for cases
with less layers (for example by
setting the specific height dif-
ference to be zero). Equation
(4.133) can be used by modifying
it, as it can be noticed that in-
stead of using the regular atmo-
spheric pressure the new “atmo-
spheric” pressure can be used as

Patmos

′
= Patmos + ρ1 g h1

The distance for the center for each area is at the middle of each of the “small”
rectangular. The geometries of each areas are

xc1 =
a2+

h2
sin β
2 A1 = `

(
h2

sin β − a2

)
Ix′x′ 1 =

`

„
h2

sin β−a2

«3

36 + (xc1)
2

A1

xc2 = h2+h3
2 sin β A2 = `

sin β (h3 − h2) Ix′x′ 2 = `(h3−h2)
3

36 sin β + (xc2)
2

A2

xc3 = h3+h4
2 sin β A3 = `

sin β (h4 − h3) Ix′x′ 3 = `(h4−h3)
3

36 sin β + (xc3)
2

A3

After inserting the values, the following equations are obtained
Thus, the first equation is

F1 + F2 = Patmos

′
Atotal︷ ︸︸ ︷

`(b2 − a2)+g sinβ

3∑

i=1

ρi+1 xci Ai

The second equation is (4.133) to be written for the moment around the point “O” as

F1 a1 + F2 b1 = Patmos

′

xcAtotal︷ ︸︸ ︷
(b2 + a2)

2
`(b2 − a2)+g sin β

3∑

i=1

ρi+1 Ix′x′ i

The solution for the above equation is

F1 =

2 b1 g sin β
P3

i=1 ρi+1 xci Ai−2 g sin β
P3

i=1 ρi+1 I
x
′
x
′

i

2 b1−2 a1
−

(b2
2−2 b1 b2+2 a2 b1−a2

2)` Patmos

2 b1−2 a1
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F2 =

2 g sin β
P3

i=1 ρi+1 I
x
′
x
′

i
−2 a1 g sin β

P3
i=1 ρi+1 xci Ai

2 b1−2 a1
+

(b2
2+2 a1 b2+a2

2−2 a1 a2)` Patmos

2 b1−2 a1

The solution provided isn’t in the complete long form since it will makes things messy.
It is simpler to compute the terms separately. A mini source code for the calculations is
provided in the the text source. The intermediate results in SI units ([m], [m2], [m4])
are:

xc1 = 2.2892 xc2 = 3.5355 xc3 = 4.9497
A1 = 2.696 A2 = 3.535 A3 = 3.535
Ix′x′1 = 14.215 Ix′x′2 = 44.292 Ix′x′3 = 86.718

The final answer is

F1 = 304809.79[N ]

and
F2 = 958923.92[N ]

End Solution

4.5.2 Forces on Curved Surfaces

dAdAx
dAy

dAz

z

y

x

Fig. -4.25. The forces on curved area.

The pressure is acting on surfaces
perpendicular to the direction of
the surface (no shear forces as-
sumption). At this stage, the
pressure is treated as a scalar
function. The element force is

dF = −P n̂dA (4.135)

Here, the conventional notation
is used which is to denote the
area, dA, outward as positive.
The total force on the area will
be the integral of the unit force

F = −
∫

A

P n̂dA (4.136)

The result of the integral is a vector. So, if the y component of the force is needed,
only a dot product is needed as

dFy = dF • ĵ (4.137)

From this analysis (equation (4.137)) it can be observed that the force in the direction
of y, for example, is simply the integral of the area perpendicular to y as
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Fy =
∫

A

P dAy (4.138)

The same can be said for the x direction.
The force in the z direction is

Fz =
∫

A

h g ρdAz (4.139)

only the 
liquid above
the body
affecting
the body

Fig. -4.26. Schematic of Net Force on floating
body.

The force which acting on the z di-
rection is the weight of the liquid above the
projected area plus the atmospheric pres-
sure. This force component can be com-
bined with the other components in the
other directions to be

Ftotal =
√

Fz
2 + Fx

2 + Fy
2 (4.140)

And the angle in “x z” plane is

tan θxz =
Fz

Fx
(4.141)

and the angle in the other plane, “y z” is

tan θzy =
Fz

Fy
(4.142)

The moment due to the curved surface require integration to obtain the value. There
are no readily made expressions for these 3–dimensional geometries. However, for some
geometries there are readily calculated center of mass and when combined with two
other components provide the moment (force with direction line).

Cut–Out Shapes Effects

There are bodies with a shape that the vertical direction (z direction) is “cut–
out” aren’t continuous. Equation (4.139) implicitly means that the net force on the
body is z direction is only the actual liquid above it. For example, Figure 4.26 shows a
floating body with cut–out slot into it. The atmospheric pressure acts on the area with
continuous lines. Inside the slot, the atmospheric pressure with it piezometric pressure
is canceled by the upper part of the slot. Thus, only the net force is the actual liquid
in the slot which is acting on the body. Additional point that is worth mentioning is
that the depth where the cut–out occur is insignificant (neglecting the change in the
density).

Example 4.15:
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4[m]

θ0

x direction

δθ
θ

Y

θ

Ax
θ

Ay

A

Fig. -4.27. Calculations of forces on a cir-
cular shape dam.

Calculate the force and the moment around
point “O” that is acting on the dam (see
Figure (4.27)). The dam is made of an
arc with the angle of θ0 = 45◦ and radius
of r = 2[m]. You can assume that the liq-
uid density is constant and equal to 1000
[kg/m3]. The gravity is 9.8[m/sec2] and
width of the dam is b = 4[m]. Com-
pare the different methods of computa-
tions, direct and indirect.

Solution

The force in the x direction is

Fx =
∫

A

P

dAx︷ ︸︸ ︷
r cos θ dθ (4.143)

Note that the direction of the area is taken into account (sign). The differential area
that will be used is, b r dθ where b is the width of the dam (into the page). The pressure
is only a function of θ and it is

P = Patmos + ρ g r sin θ

The force that is acting on the x direction of the dam is Ax × P . When the area Ax

is b r dθ cos θ. The atmospheric pressure does cancel itself (at least if the atmospheric
pressure on both sides of the dam is the same.). The net force will be

Fx =
∫ θ0

0

P︷ ︸︸ ︷
ρ g r sin θ

dAx︷ ︸︸ ︷
b r cos θ dθ

The integration results in

r

A△ = r
2

sin θ cos θ

Aarc =
θ r2

2

Fig. -4.28. Area above the dam arc sub-
tract triangle.

Fx =
ρ g b r2

2
(
1− cos2 (θ0)

)

Alternative way to do this calculation is by cal-
culating the pressure at mid point and then
multiply it by the projected area, Ax (see Fig-
ure 4.28) as

Fx = ρ g

Ax︷ ︸︸ ︷
b r sin θ0

xc︷ ︸︸ ︷
r sin θ0

2
=

ρ g b r

2
sin2 θ

Notice that dAx(cos θ) and Ax (sin θ) are dif-
ferent, why?
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The values to evaluate the last equation are provided in the question and simplify
subsidize into it as

Fx =
1000× 9.8× 4× 2

2
sin(45◦) = 19600.0[N ]

Since the last two equations are identical (use the sinuous theorem to prove it
sin2 θ + cos2 = 1), clearly the discussion earlier was right (not a good proof LOL12).
The force in the y direction is the area times width.

Fy = −

V︷ ︸︸ ︷


A︷ ︸︸ ︷
θ0 r2

2
− r2 sin θ0 cos θ0

2


 b g ρ ∼ 22375.216[N ]

The center area ( purple area in Figure 4.28) should be calculated as

yc =
yc Aarc − yc Atriangle

A

The center area above the dam requires to know the center area of the arc and triangle
shapes. Some mathematics are required because the shift in the arc orientation. The
arc center (see Figure 4.29) is at

ycarc =
4 r sin2

(
θ
2

)

3 θ

θ

4 r sin
(

θ

2

)

3 θ

4 r sin
(

θ

2

)

cos
(

θ

2

)

3 θ

Fig. -4.29. Area above the dam arc
calculation for the center.

All the other geometrical values are obtained from
Tables 3.1 and 3.2. and substituting the proper values
results in

ycr =

Aarc︷︸︸︷
θ r2

2

yc︷ ︸︸ ︷
4 r sin

(
θ
2

)
cos

(
θ
2

)

3 θ
−

yc︷ ︸︸ ︷
2 r cos θ

3

Atriangle︷ ︸︸ ︷
sin θ r2

2
θ r2

2︸︷︷︸
Aarc

− r2 sin θ cos θ

2︸ ︷︷ ︸
Atriangle

This value is the reverse value and it is

ycr = 1.65174[m]

The result of the arc center from point “O” (above
calculation area) is

yc = r − ycr = 2− 1.65174 ∼ 0.348[m]
12Well, it is just a demonstration!
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The moment is

Mv = yc Fy ∼ 0.348× 22375.2 ∼ 7792.31759[N ×m]

The center pressure for x area is

xp = xc +
Ixx

xc A
=

r cosθ0

2
+

Ixx︷ ︸︸ ︷
¢b (r cos θ0)

3

36
r cosθ0

2︸ ︷︷ ︸
xc

¢b (r cos θ0)
=

5 r cos θ0

9

The moment due to hydrostatic pressure is

Mh = xp Fx =
5 r cosθ0

9
Fx ∼ 15399.21[N ×m]

The total moment is the combination of the two and it is

Mtotal = 23191.5[N ×m]

O

θ θ/2

θ/2

ℓ = 2 r sin







θ

2







dF θ/2

(

π − θ

2

)

(

π

2

)

Fig. -4.30. Moment on arc element around
Point “O.”

For direct integration of the moment it
is done as following

dF = P dA =
∫ θ0

0

ρ g sin θ b r dθ

and element moment is

dM = dF × ` = dF

`︷ ︸︸ ︷
2 r sin

(
θ

2

)
cos

(
θ

2

)

and the total moment is

M =
∫ θ0

0

dM

or

M =
∫ θ0

0

ρ g sin θ b r 2 r sin
(

θ

2

)
cos

(
θ

2

)
dθ

The solution of the last equation is

M =
g r ρ (2 θ0 − sin (2 θ0))

4

The vertical force can be obtained by

Fv =
∫ θ0

0

P dAv
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or

Fv =
∫ θ0

0

P︷ ︸︸ ︷
ρ g r sin θ

dAv︷ ︸︸ ︷
r dθ cos θ

Fv =
g r2 ρ

2

(
1− cos (θ0)

2
)

Here, the traditional approach was presented first, and the direct approach second.
It is much simpler now to use the second method. In fact, there are many programs
or hand held devices that can carry numerical integration by inserting the function and
the boundaries.

End Solution

To demonstrate this point further, consider a more general case of a polynomial
function. The reason that a polynomial function was chosen is that almost all the
continuous functions can be represented by a Taylor series, and thus, this example
provides for practical purposes of the general solution for curved surfaces.

Example 4.16:

y

x

y =

n∑

i=1
aix

i

o

b

dy

dx

dA

Fig. -4.31. Polynomial shape dam
description for the moment around
point “O” and force calculations.

For the liquid shown in Figure 4.31 ,calcu-
late the moment around point “O” and
the force created by the liquid per unit
depth. The function of the dam shape is
y =

∑n
i=1 ai xi and it is a monotonous

function (this restriction can be relaxed
somewhat). Also calculate the horizontal
and vertical forces.

Solution

The calculations are done per unit depth (into the page) and do not require the actual
depth of the dam.

The element force (see Figure 4.31) in this case is

dF =

P︷ ︸︸ ︷
h︷ ︸︸ ︷

(b− y) g ρ

dA︷ ︸︸ ︷√
dx2 + dy2

The size of the differential area is the square root of the dx2 and dy2 (see Figure 4.31).
It can be noticed that the differential area that is used here should be multiplied by the
depth. From mathematics, it can be shown that

√
dx2 + dy2 = dx

√
1 +

(
dy

dx

)2
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y

x

b

dy

dx

θ

x

y

dF

ℓ

Fig. -4.32. The difference be-
tween the slop and the direction
angle.

The right side can be evaluated for any given func-
tion. For example, in this case describing the dam func-
tion is

√
1 +

(
dy

dx

)2

=

√√√√1 +

(
n∑

i=1

i a (i) x (i)i−1

)2

The value of xb is where y = b and can be obtained by
finding the first and positive root of the equation of

0 =
n∑

i=1

ai xi − b

To evaluate the moment, expression of the distance and
angle to point “O” are needed (see Figure 4.32). The
distance between the point on the dam at x to the point “O” is

`(x) =
√

(b− y)2 + (xb − x)2

The angle between the force and the distance to point “O” is

θ(x) = tan−1

(
dy

dx

)
− tan−1

(
b− y

xb − x

)

The element moment in this case is

dM = `(x)

dF︷ ︸︸ ︷

(b− y) g ρ

√
1 +

(
dy

dx

)2

cos θ(x) dx

To make this example less abstract, consider the specific case of y = 2 x6. In this case,
only one term is provided and xb can be calculated as following

xb = 6

√
b

2

Notice that 6

√
b
2 is measured in meters. The number “2” is a dimensional number with

units of [1/m5]. The derivative at x is

dy

dx
= 12 x5

and the derivative is dimensionless (a dimensionless number). The distance is

` =

√√√√(b− 2 x6)2 +

(
6

√
b

2
− x

)2
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The angle can be expressed as

θ = tan−1
(
12 x5

)− tan−1


 b− 2 x6

6

√
b
2 − x




The total moment is

M =
∫ 6√

b

0

`(x) cos θ(x)
(
b− 2 x6

)
g ρ

√
1 + 12 x5 dx

This integral doesn’t have a analytical solution. However, for a given value b this integral
can be evaluate. The horizontal force is

Fh = b ρ g
b

2
=

ρ g b2

2

The vertical force per unit depth is the volume above the dam as

Fv =
∫ 6√

b

0

(
b− 2 x6

)
ρ g dx = ρ g

5 b
7
6

7

In going over these calculations, the calculations of the center of the area were not
carried out. This omission saves considerable time. In fact, trying to find the center of
the area will double the work. This author find this method to be simpler for complicated
geometries while the indirect method has advantage for very simple geometries.

End Solution

4.6 Buoyancy and Stability
h0r0

a

b

Fig. -4.33. Schematic of Immersed Cylinder.

One of the oldest known scientific re-
search on fluid mechanics relates to buoy-
ancy due to question of money was car-
ried by Archimedes. Archimedes princi-
ple is related to question of density and
volume. While Archimedes did not know
much about integrals, he was able to cap-
ture the essence. Here, because this ma-
terial is presented in a different era, more advance mathematics will be used. While the
question of the stability was not scientifically examined in the past, the floating vessels
structure (more than 150 years ago) show some understanding13.

The total forces the liquid exacts on a body are considered as a buoyancy issue.
To understand this issue, consider a cubical and a cylindrical body that is immersed

13This topic was the author’s high school name. It was taught by people like these, 150 years ago
and more, ship builders who knew how to calculate GM but weren’t aware of scientific principles behind
it. If the reader wonders why such a class is taught in a high school, perhaps the name can explain it:
Sea Officers High School.



116 CHAPTER 4. FLUIDS STATICS

in liquid and center in a depth of, h0 as shown in Figure 4.33. The force to hold the
cylinder at the place must be made of integration of the pressure around the surface
of the square and cylinder bodies. The forces on square geometry body are made only
of vertical forces because the two sides cancel each other. However, on the vertical
direction, the pressure on the two surfaces are different. On the upper surface the
pressure is ρg(h0 − a/2). On the lower surface the pressure is ρg(h0 + a/2). The force
due to the liquid pressure per unit depth (into the page) is

F = ρg ((h0 − a/2)− (h0 + a/2)) ` b = −ρ g a b ` = −ρgV (4.144)

In this case the ` represents a depth (into the page). Rearranging equation (4.144) to
be

F

V
= ρ g (4.145)

The force on the immersed body is equal to the weight of the displaced liquid. This
analysis can be generalized by noticing two things. All the horizontal forces are canceled.
Any body that has a projected area that has two sides, those will cancel each other.
Another way to look at this point is by approximation. For any two rectangle bodies,
the horizontal forces are canceling each other. Thus even these bodies are in contact
with each other, the imaginary pressure make it so that they cancel each other.

On the other hand, any shape is made of many small rectangles. The force on
every rectangular shape is made of its weight of the volume. Thus, the total force is
made of the sum of all the small rectangles which is the weight of the sum of all volume.

θ

h0

r

Fig. -4.34. The floating
forces on Immersed Cylin-
der.

In illustration of this concept, consider the cylindrical
shape in Figure 4.33. The force per area (see Figure 4.34)
is

dF =

P︷ ︸︸ ︷
ρ g (h0 − r sin θ)

dAvertical︷ ︸︸ ︷
sin θ r dθ (4.146)

The total force will be the integral of the equation (4.146)

F =
∫ 2π

0

ρ g (h0 − r sin θ) r dθ sin θ (4.147)

Rearranging equation (4.146) transforms it to

F = r g ρ

∫ 2π

0

(h0 − r sin θ) sin θ dθ (4.148)

The solution of equation (4.148) is

F = −π r2 ρ g (4.149)

The negative sign indicate that the force acting upwards. While the horizontal force is

Fv =
∫ 2 π

0

(h0 − r sin θ) cos θ dθ = 0 (4.150)
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Example 4.17:
To what depth will a long log with radius, r, a length, ` and density, ρw in liquid with
denisty, ρl. Assume that ρl > ρw. You can provide that the angle or the depth.

t
h

w
h1

hin

Fig. -4.35. Schematic of a thin wall
floating body.

Typical examples to explain the buoyancy are
of the vessel with thin walls put upside down into
liquid. The second example of the speed of the
floating bodies. Since there are no better examples,
these examples are a must.

Example 4.18:
A cylindrical body, shown in Figure 4.35 ,is floating
in liquid with density, ρl. The body was inserted
into liquid in a such a way that the air had remained
in it. Express the maximum wall thickness, t, as a
function of the density of the wall, ρs liquid density,
ρl and the surroundings air temperature, T1 for the
body to float. In the case where thickness is half the maximum, calculate the pressure
inside the container. The container diameter is w. Assume that the wall thickness is
small compared with the other dimensions (t << w and t << h).

Solution

The air mass in the container is

mair =

V︷ ︸︸ ︷
π w2 h

ρair︷ ︸︸ ︷
Patmos

R T

The mass of the container is

mcontainer =




A︷ ︸︸ ︷
π w2 + 2 π w h


 t ρs

The liquid amount enters into the cavity is such that the air pressure in the cavity equals
to the pressure at the interface (in the cavity). Note that for the maximum thickness,
the height, h1 has to be zero. Thus, the pressure at the interface can be written as

Pin = ρl g hin

On the other hand, the pressure at the interface from the air point of view (ideal gas
model) should be

Pin =
mair R T1

hin π w2

︸ ︷︷ ︸
V
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Since the air mass didn’t change and it is known, it can be inserted into the above
equation.

ρl g hin + Patmos = Pin =

(
π w2 h

)
ρ︷ ︸︸ ︷

Patmos

R T1
R T1

hin π w2

The last equation can be simplified into

ρl g hin + Patmos =
h Patmos

hin

And the solution for hin is

hin = −Patmos +
√

4 g h Patmos ρl + Patmos
2

2 g ρl

and

hin =

√
4 g hPatmos ρl + Patmos

2 − Patmos

2 g ρl

The solution must be positive, so that the last solution is the only physical solution.

Example 4.19:
Calculate the minimum density an infinitely long equilateral triangle (three equal sides)
has to be so that the sharp end is in the water.

Advance material can be skipped

Extreme Cases

The solution demonstrates that when h −→ 0 then hin −→ 0. When the gravity
approaches zero (macro gravity) then

hin =
Patmos

ρl g
+ h− h2 ρl g

Patmos
+

2 h3 ρl
2 g2

Patmos
2 − 5 h4 ρl

3 g3

Patmos
3 + · · ·

This “strange” result shows that bodies don’t float in the normal sense. When the
floating is under vacuum condition, the following height can be expanded into

hin =

√
hPatmos

g ρl
+

Patmos

2 g ρl
+ · · ·

which shows that the large quantity of liquid enters into the container as it is expected.

End Advance material

Archimedes theorem states that the force balance is at displaced weight liquid (of
the same volume) should be the same as the container, the air. Thus,

net displayed
water︷ ︸︸ ︷

π w2 (h− hin) g =

container︷ ︸︸ ︷(
π w2 + 2 π w h

)
t ρs g +

air︷ ︸︸ ︷
π w2 h

(
Patmos

R T1

)
g
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If air mass is neglected the maximum thickness is

tmax =
2 g hw ρl + Patmos w − w

√
4 gh Patmos ρl + Patmos

2

(2 g w + 4 g h) ρl ρs

The condition to have physical value for the maximum thickness is

2 g h ρl + Patmos ≥
√

4 gh Patmos ρl + Patmos
2

The full solution is

tmax = −
“

w R
√

4 gh Patmos ρl+Patmos
2−2 g h w R ρl−Patmos w R

”
T1+2 g h Patmos w ρl

(2 g w+4 g h) R ρl ρs T1

In this analysis the air temperature in the container immediately after insertion
in the liquid has different value from the final temperature. It is reasonable as the
first approximation to assume that the process is adiabatic and isentropic. Thus, the
temperature in the cavity immediately after the insertion is

Ti

Tf
=

(
Pi

Pf

)

The final temperature and pressure were calculated previously. The equation of state is

Pi =
mair R Ti

Vi

The new unknown must provide additional equation which is

Vi = π w2 hi

Thickness Below The Maximum

For the half thickness t = tmax

2 the general solution for any given thickness below
maximum is presented. The thickness is known, but the liquid displacement is still
unknown. The pressure at the interface (after long time) is

ρl g hin + Patmos =
π w2 hPatmos

R T1
R T1

(hin + h1) π w2

which can be simplified to

ρl g hin + Patmos =
hPatmos

hin + h1

The second equation is Archimedes’ equation, which is

π w2 (h− hin − h1) =
(
π w2 + 2 π w h) t ρs g

)
+ π w2 h

(
Patmos

R T1

)
g

End Solution
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Example 4.20:
A body is pushed into the liquid to a distance, h0 and left at rest. Calculate acceleration
and time for a body to reach the surface. The body’s density is α ρl , where α is ratio
between the body density to the liquid density and (0 < α < 1). Is the body volume
important?

Solution

The net force is

F =

liquid
weight︷ ︸︸ ︷
V g ρl −

body
weight︷ ︸︸ ︷
V g α ρl = V g ρl (1− α)

But on the other side the internal force is

F = ma =
m︷ ︸︸ ︷

V αρl a

Thus, the acceleration is

a = g

(
1− α

α

)

If the object is left at rest (no movement) thus time will be (h = 1/2 a t2)

t =

√
2 hα

g(1− α)

If the object is very light (α −→ 0) then

tmin =

√
2 hα

g
+
√

2 g h α
3
2

2 g
+

3
√

2 g h α
5
2

8 g
+

5
√

2 g h α
7
2

16 g
+ · · ·

From the above equation, it can be observed that only the density ratio is important.
This idea can lead to experiment in “large gravity” because the acceleration can be
magnified and it is much more than the reverse of free falling.

End Solution

Example 4.21:
In some situations, it is desired to find equivalent of force of a certain shape to be
replaced by another force of a “standard” shape. Consider the force that acts on a half
sphere. Find equivalent cylinder that has the same diameter that has the same force.

Solution

The force act on the half sphere can be found by integrating the forces around the
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sphere. The element force is

dF = (ρL − ρS) g

h︷ ︸︸ ︷
r cosφ cos θ

dAx︷ ︸︸ ︷

cos θ cos φ

dA︷ ︸︸ ︷
r2 dθ dφ

The total force is then

Fx =
∫ π

0

∫ π

0

(ρL − ρS) g cos2 φ cos2 θ r3 dθ dφ

The result of the integration the force on sphere is

Fs =
π2 (ρL − ρS) r3

4

The force on equivalent cylinder is

Fc = π r2 (ρL − ρS)h

These forces have to be equivalent and thus

π ¤2»»»»»(ρL − ρS) r¢¢̧
1

3

4
=½π¡¡r2

»»»»»(ρL − ρS)h

Thus, the height is
h

r
=

π

4
End Solution

Example 4.22:
In the introduction to this section, it was assumed that above liquid is a gas with
inconsequential density. Suppose that the above layer is another liquid which has a bit
lighter density. Body with density between the two liquids, ρl < ρs < rhoh is floating
between the two liquids. Develop the relationship between the densities of liquids and
solid and the location of the solid cubical. There are situations where density is a
function of the depth. What will be the location of solid body if the liquid density
varied parabolically.

Solution

In the discussion to this section, it was shown that net force is the body volume times
the the density of the liquid. In the same vein, the body can be separated into two:
one in first liquid and one in the second liquid. In this case there are two different
liquid densities. The net force down is the weight of the body ρc hA. Where h is the
height of the body and A is its cross section. This force is balance according to above
explanation by the two liquid as

ρc©©hA = ©©Ah (α ρl + (1− α)ρh)
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Where α is the fraction that is in low liquid. After rearrangement it became

α =
ρc − ρh

ρl − ρh

the second part deals with the case where the density varied parabolically. The density
as a function of x coordinate along h starting at point ρh is

ρ(x) = ρh −
(x

h

)2

(ρh − ρl)

Thus the equilibration will be achieved, A is canceled on both sides, when

ρc h =
∫ x1+h

x1

[
ρh −

(x

h

)2

(ρh − ρl)
]

dx

After the integration the equation transferred into

ρc h =
(3 ρl − 3 ρh) x12 + (3 h ρl − 3 h ρh) x1 + h2 ρl + 2 h2 ρh

3 h

And the location where the lower point of the body (the physical), x1, will be at

X1 =
√

3
√

3 h2 ρl
2 + (4 ρc − 6 h2 ρh) ρl + 3 h2 ρh

2 − 12 ρc ρh + 3 h ρl − 3 h ρh

6 ρh − 2 ρl

For linear relationship the following results can be obtained.

x1 =
h ρl + h ρh − 6 ρc

2 ρl − 2 ρh

In many cases in reality the variations occur in small zone compare to the size of the
body. Thus, the calculations can be carried out under the assumption of sharp change.
However, if the body is smaller compare to the zone of variation, they have to accounted
for.

End Solution

Example 4.23:
A hollow sphere is made of steel (ρs/ρw

∼= 7.8) with a t wall thickness. What is the
thickness if the sphere is neutrally buoyant? Assume that the radius of the sphere is
R. For the thickness below this critical value, develop an equation for the depth of the
sphere.

Solution

The weight of displaced water has to be equal to the weight of the sphere

ρs ¢g
4 π R3

3
= ρw ¢g

(
4 π R3

3
− 4 π (R− t)3

3

)
(4.XXIII.a)
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after simplification equation (4.XXIII.a) becomes

ρs R3

ρw
= 3 tR2 − 3 t2 R + t3 (4.XXIII.b)

Equation (4.XXIII.b) is third order polynomial equation which it’s solution (see the
appendix) is

t1 =
(
−
√

3 i
2 − 1

2

) (
ρs

ρw
R

3
−R3

) 1
3

+ R

t2 =
(√

3 i
2 − 1

2

) (
ρs

ρw
R

3
−R3

) 1
3

+ R

t3 = R

(
3

√
ρs

ρw
− 1 + 1

)
(4.XXIII.c)

The first two solutions are imaginary thus not valid for the physical world. The last
solution is the solution that was needed. The depth that sphere will be located depends
on the ratio of t/R which similar analysis to the above. For a given ratio of t/R, the
weight displaced by the sphere has to be same as the sphere weight. The volume of a
sphere cap (segment) is given by

Vcap =
π h2 (3R− h)

3
(4.XXIII.d)

Where h is the sphere height above the water. The volume in the water is

Vwater =
4 π R3

3
− π h2 (3R− h)

3
=

4 π
(
R3 − 3 R h2 + h3

)

3
(4.XXIII.e)

When Vwater denotes the volume of the sphere in the water. Thus the Archimedes law
is

ρw 4 π
(
R3 − 3 R h2 + h3

)

3
=

ρs 4 π
(
3 t R2 − 3 t2 R + t3

)

3
(4.XXIII.f)

or (
R3 − 3 R h2 + h3

)
=

ρw

ρs

(
3 tR2 − 3 t2 R + t3

)
(4.XXIII.g)

The solution of (4.XXIII.g) is

h =

(√
−fR (4R3 − fR)

2
− fR− 2 R3

2

)1
3

+
R2

(√
−fR (4R3 − fR)

2
− fR− 2 R3

2

)1
3

(4.XXIII.h)
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Where −fR = R3 − ρw

ρs
(3 tR2 − 3 t2 R + t3) There are two more solutions which

contains the imaginary component. These solutions are rejected.
End Solution

Example 4.24:
One of the common questions in buoyancy is the weight with variable cross section and
fix load. For example, a wood wedge of wood with a fix weight/load. The general
question is at what the depth of the object (i.e. wedge) will be located. For simplicity,
assume that the body is of a solid material.

Solution

It is assumed that the volume can be written as a function of the depth. As it was
shown in the previous example, the relationship between the depth and the displaced
liquid volume of the sphere. Here it is assumed that this relationship can be written as

Vw = f(d, other geometrical parameters) (4.XXIV.a)

The Archimedes balance on the body is

ρ`Va = ρwVw (4.XXIV.b)

d = f−1 ρ`Va

ρw
(4.XXIV.c)

End Solution

Example 4.25:
In example 4.24 a general solution was provided. Find the reverse function, f−1 for
cone with 30◦ when the tip is in the bottom.

Solution

First the function has to built for d (depth).

Vw =
π d

(
d√
3

)2

3
=

π d3

9

(4.XXV.a)

Thus, the depth is

d = 3

√
9 π ρw

ρ` Va

(4.XXV.b)

End Solution

4.6.1 Stability
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Fig. -4.36. Schematic of floating bodies.

Figure 4.36 shows a body made of
hollow balloon and a heavy sphere
connected by a thin and light rod.
This arrangement has mass centroid
close to the middle of the sphere.
The buoyant center is below the mid-
dle of the balloon. If this arrange-
ment is inserted into liquid and will
be floating, the balloon will be on the
top and sphere on the bottom. Tilt-
ing the body with a small angle from
its resting position creates a shift in the forces direction (examine Figure 4.36b). These
forces create a moment which wants to return the body to the resting (original) po-
sition. When the body is at the position shown in Figure 4.36c ,the body is unstable
and any tilt from the original position creates moment that will further continue to
move the body from its original position. This analysis doesn’t violate the second
law of thermodynamics. Moving bodies from an unstable position is in essence like a
potential.

G

B

Fig. -4.37. Schematic of floating cubic.

A wooden cubic (made of pine, for exam-
ple) is inserted into water. Part of the block
floats above water line. The cubic mass (grav-
ity) centroid is in the middle of the cubic. How-
ever the buoyant center is the middle of the vol-
ume under the water (see Figure 4.37). This
situation is similar to Figure 4.36c. However,
any experiment of this cubic wood shows that
it is stable locally. Small amount of tilting of
the cubic results in returning to the original po-
sition. When tilting a larger amount than π/4
, it results in a flipping into the next stable position. The cubic is stable in six positions
(every cubic has six faces). In fact, in any of these six positions, the body is in situation
like in 4.36c. The reason for this local stability of the cubic is that other positions are
less stable. If one draws the stability (later about this criterion) as a function of the
rotation angle will show a sinusoidal function with four picks in a whole rotation.

So, the body stability must be based on the difference between the body’s local
positions rather than the “absolute” stability. That is, the body is “stable” in some
points more than others in their vicinity. These points are raised from the buoyant force
analysis. When the body is tilted at a small angle, β, the immersed part of the body
center changes to a new location, B’ as shown in Figure 4.38. The center of the mass
(gravity) is still in the old location since the body did not change. The stability of the
body is divided into three categories. If the new immerse volume creates a new center in
such way that couple forces (gravity and buoyancy) try to return the body, the original
state is referred as the stable body and vice versa. The third state is when the couple
forces do have zero moment, it is referred to as the neutral stable.
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Fig. -4.38. Stability analysis of floating body.

The body, shown in Figure 4.38, when given a tilted position, move to a new
buoyant center, B’. This deviation of the buoyant center from the old buoyant center
location, B, should to be calculated. This analysis is based on the difference of the
displaced liquid. The right green area (volume) in Figure 4.38 is displaced by the same
area (really the volume) on left since the weight of the body didn’t change14 so the
total immersed section is constant. For small angle, β, the moment is calculated as the
integration of the small force shown in the Figure 4.38 as ∆F . The displacement of the
buoyant center can be calculated by examining the moment these forces creats. The
body weight creates opposite moment to balance the moment of the displaced liquid
volume.

BB′W = M (4.151)

Where M is the moment created by the displaced areas (volumes), BB′ is the distance
between points B and point B’, and, W referred to the weight of the body. It can
be noticed that the distance BB′ is an approximation for small angles (neglecting the
vertical component.). So the perpendicular distance, BB′, should be

BB′ =
M
W

(4.152)

The moment M can be calculated as

M =
∫

A

δF︷ ︸︸ ︷
g ρl xβ dA︸ ︷︷ ︸

dV

x = g ρl β

∫

A

x2dA (4.153)

14It is correct to state: area only when the body is symmetrical. However, when the body is not
symmetrical, the analysis is still correct because the volume and not the area is used.
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The integral in the right side of equation (4.153) is referred to as the area moment
of inertia and was discussed in Chapter 3. The distance, BB′ can be written from
equation (4.153) as

BB′ =
g ρl Ixx

ρsVbody
(4.154)

The point where the gravity force direction is intersecting with the center line of
the cross section is referred as metacentric point, M. The location of the metacentric
point can be obtained from the geometry as

BM =
BB′

sin β
(4.155)

And combining equations (4.154) with (4.155) yields

BM = ¢g ρlβIxx

¢g ρs sin β Vbody
=

ρl Ixx

ρs Vbody
(4.156)

For small angle (β ∼ 0)

lim
β→0

sin β

β
∼ 1 (4.157)

It is remarkable that the results is independent of the angle. Looking at Figure 4.38,
the geometrical quantities can be related as

GM =

BM︷ ︸︸ ︷
ρl Ixx

ρsVbody
−BG (4.158)

Example 4.26:
A solid cone floats in a heavier liquid (that is ρl/ρc > 1). The ratio of the cone density
to liquid density is α. For a very light cone ρc/ρl ∼ 0, the cone has zero depth. At
this condition, the cone is unstable. For middle range, 1 > ρc/ρl > 0 there could be a
range where the cone is stable. The angle of the cone is θ. Analyze this situation.

Solution

The floating cone volume is
π d r2

3
and the center of gravity is D/4. The distance BG

depent on d as
BG = D/4− d/4 (4.XXVI.a)

Where D is the total height and d is the height of the submerged cone. The moment
of inertia of the cone is circle shown in Table 3.1. The relationship between the radius
the depth is

r = d tan θ (4.XXVI.b)



128 CHAPTER 4. FLUIDS STATICS

GM =
ρl

Ixx︷ ︸︸ ︷
π (d tan θ)4

64

ρs
π d (d tan θ)2

3︸ ︷︷ ︸
Vbody

−

BG︷ ︸︸ ︷(
D

4
− d

4

)
(4.XXVI.c)

Equation (4.XXVI.c) can be simplified as

GM =
ρl d tan2 θ

ρs 192
−

(
D

4
− d

4

)
(4.XXVI.d)

The relationship between D and d is determined by the density ratio ( as displaced
volume is equal to cone weight)15

ρl d
3 = ρc D3 =⇒ D = d 3

√
ρl

ρc
(4.XXVI.e)

Substituting equation (4.XXVI.e) into (4.XXVI.d) yield the solution when GM = 0

0 =
ρl d tan2 θ

ρs 192
−




d 3

√
ρl

ρc

4
− d

4


 =⇒ ρl tan2 θ

ρs 48
= 3

√
ρl

ρc
− 1 (4.XXVI.f)

Since ρl > ρc this never happened.
End Solution

To understand these principles consider the following examples.

Example 4.27:
A solid block of wood of uniform density, ρs = α ρl where ( 0 ≤ α ≤ 1 ) is floating in a
liquid. Construct a graph that shows the relationship of the GM as a function of ratio
height to width. Show that the block’s length, L, is insignificant for this analysis.

Solution

Equation (4.158) requires that several quantities should be expressed. The moment of

inertia for a block is given in Table 3.1 and is Ixx = La3

12 . Where L is the length into the

page. The distance BG is obtained from Archimedes’ theorem and can be expressed as

W = ρs

V︷ ︸︸ ︷
a h L = ρl

immersed
volume︷ ︸︸ ︷
a h1 L =⇒ h1 =

ρs

ρl
h

15Only the dimension is compared, why?
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L

a

h

h1

Fig. -4.39. Cubic body dimensions for stability analysis.
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Fig. -4.40. Stability of cubic body infinity long.

Thus, the distance BG is (see Figure 4.37)

BG =
h

2
−

h1︷︸︸︷
ρs

ρl
h

1
2

=
h

2

(
1− ρs

ρl

)

(4.159)

GM =
¢g ρl

Ixx︷︸︸︷
¶La3

12
¢g ρs a h¶L︸ ︷︷ ︸

V

− h

2

(
1− ρs

ρl

)

Simplifying the above equation provides

GM

h
=

1
12 α

(a

h

)2

− 1
2

(1− α) (4.160)

where α is the density ratio. Notice that
GM/h isn’t a function of the depth, L. This equation leads to the condition where the
maximum height above which the body is not stable anymore as

a

h
≥

√
6 (1− α)α (4.161)

End Solution
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Fig. -4.41. The maximum height reverse as a
function of density ratio.

One of the interesting point for the
above analysis is that there is a point
above where the ratio of the height to the
body width is not stable anymore. In cylin-
drical shape equivalent to equation (4.161)
can be expressed. For cylinder (circle) the
moment of inertia is Ixx = π b4/64. The
distance BG is the same as for the square
shape (cubic) (see above (4.159)). Thus,
the equation is

GM

h
=

g

64 α

(
b

h

)2

− 1
2

(1− α)

And the condition for maximum height for stability is

b

h
≥

√
32 (1− α) α

This kind of analysis can be carried for different shapes and the results are shown for
these two shapes in Figure 4.41. It can be noticed that the square body is more stable
than the circular body shape.

Principle Main Axises

Any body has infinite number of different axises around which moment of inertia
can be calculated. For each of these axises, there is a different moment of inertia. With
the exception of the circular shape, every geometrical shape has an axis in which the
moment of inertia is without the product of inertia. This axis is where the main rotation
of the body will occur. Some analysis of floating bodies are done by breaking the rotation
of arbitrary axis to rotate around the two main axises. For stability analysis, it is enough
to find if the body is stable around the smallest moment of inertia. For example, a square
shape body has larger moment of inertia around diagonal. The difference between the
previous calculation and the moment of inertia around the diagonal is

∆Ixx =

I diagonal axis︷ ︸︸ ︷√
2 a

(√
3 a
2

)3

6
−

“normal′′axis︷︸︸︷
a4

12
∼ 0.07 a4

Which show that if the body is stable at main axises, it must be stable at the “diagonal”
axis. Thus, this problem is reduced to find the stability for principle axis.

Unstable Bodies

What happen when one increases the height ratio above the maximum height
ratio? The body will flip into the side and turn to the next stable point (angle).
This is not a hypothetical question, but rather practical. This happens when a ship is
overloaded with containers above the maximum height. In commercial ships, the fuel is
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stored at the bottom of the ship and thus the mass center (point G) is changing during
the voyage. So, the ship that was stable (positive GM) leaving the initial port might
became unstable (negative GM) before reaching the destination port.

Example 4.28:
One way to make a ship to be a hydrodynamic is by making the body as narrow as
possible. Suppose that two opposite sides triangle (prism) is attached to each other
to create a long “ship” see Figure 4.42. Supposed that a/h −→ 0̃ the body will be
unstable. On the other side if the a/h −→ ∞̃ the body is very stable. What is the
minimum ratio of a/h that keep the body stable at half of the volume in liquid (water).
Assume that density ratio is ρl/ρs = ρ̄.

a

h

a

Fig. -4.42. Stability of two triangles put
tougher.

Solution

The answer to the question is that the lim-
iting case where GM = 0. To find this
ratio equation terms in (4.158) have to be
found. The Volume of the body is

V = 2
(

a2 h

2

)
= a2 h

The moment of inertia is triangle (see ex-
planation in example (3.7) is

Ixx =
a h3

2

And the volume is

Vbody = a2

√
h2 − a2

4
= a2 h

√
1− 1

4
a2

h2

The point B is a function of the density ratio of the solid and liquid. Denote the liquid
density as ρl and solid density as ρs. The point B can be expressed as

B =
a ρs

2 ρl

And thus the distance BG is

BG =
a

2

(
1− ρs

ρl

)

The limiting condition requires that GM = 0 so that

ρl Ixx

ρsVbody
= BG
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Or explicitly

ρl
a h3

2

ρs a2 h

√
1− 1

4
a2

h2

=
a

2

(
1− ρs

ρl

)

After rearrangement and using the definitions of ξ = h/a ρ̄ρl/ρs results in

ρ̄ ξ2

√
1− ξ2

4

=
(

1− 1
ρ̄

)

The solution of the above solution is obtained by squaring both sides and defining a
new variable such as x = ξ2. After the above manipulation and selecting the positive
value and to keep stability as

x <

√√
64 ρ̄4−64 ρ̄3+ρ̄2−2 ρ̄+1

ρ̄ + 1
ρ̄ − 1

2
√

2 ρ̄

End Solution

4.6.1.1 Stability of Body with Shifting Mass Centroid

B B
′

G G
′

Gc

M

Fig. -4.43. The effects of liquid movement on
the GM .

Ships and other floating bodies carry liq-
uid or have a load which changes the
mass location during tilting of the float-
ing body. For example, a ship that carries
wheat grains where the cargo is not prop-
erly secured to the ship. The movement of
the load (grains, furniture, and/or liquid)
does not occur in the same speed as the
body itself or the displaced outside liquid.
Sometimes, the slow reaction of the load,
for stability analysis, is enough to be ig-
nored. Exact analysis requires taking into
account these shifting mass speeds. How-
ever, here, the extreme case where the load reacts in the same speed as the tilting of
the ship/floating body is examined. For practical purposes, it is used as a limit for the
stability analysis. There are situations where the real case approaches to this extreme.
These situations involve liquid with a low viscosity (like water, alcohol) and ship with
low natural frequency (later on the frequency of the ships). Moreover, in this analysis,
the dynamics are ignored and only the statics is examined (see Figure 4.43).

A body is loaded with liquid “B” and is floating in a liquid “A” as shown in Figure
4.43. When the body is given a tilting position the body displaces the liquid on the
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outside. At the same time, the liquid inside is changing its mass centroid. The moment
created by the inside displaced liquid is

Min = g ρlBβIxxB (4.162)

Note that IxxB isn’t the same as the moment of inertia of the outside liquid interface.

The change in the mass centroid of the liquid “A” then is

G1G′1 = ¢g©©ρlBβIxxB

¢g VB ©©ρlB︸ ︷︷ ︸
Inside
liquid
weight

=
IxxB

VB
(4.163)

Equation (4.163) shows that GG′ is only a function of the geometry. This quantity,
G1G′1, is similar for all liquid tanks on the floating body.

The total change of the vessel is then calculated similarly to center area calcula-
tions.

¢g mtotal GG′ =»»»»:0
g mbody + ¢g mfG1G′1 (4.164)

For more than one tank, it can be written as

GG′ =
g

Wtotal

n∑

i=1

GiGiρliVi =
g

Wtotal

n∑

i=1

Ixxbi

Vbi

(4.165)

A new point can be defined as Gc. This point is the intersection of the center line
with the vertical line from G′.

GGc =
GG′

sin β
(4.166)

The distance that was used before GM is replaced by the criterion for stability by
Gc M and is expressed as

Gc M =
g ρA IxxA

ρsVbody
−BG− 1

mtotal

Ixxb

Vb
(4.167)

If there are more than one tank partially filled with liquid, the general formula is

Gc M =
g ρA IxxA

ρsVbody
−BG− 1

mtotal

n∑

i=1

Ixxbi

Vbi

(4.168)
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T d
h

G

Fig. -4.44. Measurement of GM of floating body.

One way to reduce the effect of
the moving mass center due to liq-
uid is done by substituting a single
tank with several tanks. The mo-
ment of inertial of the combine two
tanks is smaller than the moment of
inertial of a single tank. Increasing
the number of tanks reduces the mo-
ment of inertia. The engineer could
design the tanks in such a way that
the moment of inertia is operationally
changed. This control of the stability, GM , can be achieved by having some tanks
spanning across the entire body with tanks spanning on parts of the body. Movement
of the liquid (mostly the fuel and water) provides way to control the stability, GM , of
the ship.

4.6.1.2 Metacentric Height, GM , Measurement

The metacentric height can be measured by finding the change in the angle when a
weight is moved on the floating body.

Moving the weight, T a distance, d then the moment created is

Mweight = T d (4.169)

This moment is balanced by

Mrighting = WtotalGMnew θ (4.170)

Where, Wtotal, is the total weight of the floating body including measuring weight.
The angle, θ, is measured as the difference in the orientation of the floating body. The
metacentric height is

GMnew =
T d

Wtotal θ
(4.171)

If the change in the GM can be neglected, equation (4.171) provides the solution. The
calculation of GM can be improved by taking into account the effect of the measuring
weight. The change in height of G is

¢g mtotal Gnew = ¢g mship Gactual + ¢g T h (4.172)

Combining equation (4.172) with equation (4.171) results in

GMactual = GMnew
mtotal

mship
− h

T

mship
(4.173)

The weight of the ship is obtained from looking at the ship depth.
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4.6.1.3 Stability of Submerged Bodies

The analysis of submerged bodied is different from the stability when the body lays
between two fluid layers with different density. When the body is submerged in a single
fluid layer, then none of the changes of buoyant centroid occurs. Thus, the mass
centroid must be below than buoyant centroid in order to have stable condition.

However, all fluids have density varied in some degree. In cases where the density
changes significantly, it must be taken into account. For an example of such a case is
an object floating in a solar pond where the upper layer is made of water with lower
salinity than the bottom layer(change up to 20% of the density). When the floating
object is immersed into two layers, the stability analysis must take into account the
changes of the displaced liquids of the two liquid layers. The calculations for such cases
are a bit more complicated but based on the similar principles. Generally, this density
change helps to increase the stability of the floating bodies. This analysis is out of the
scope of this book (for now).

4.6.1.4 Stability of None Systematical or “Strange” Bodies

GM

M

G

δβ
∆F

∆F

B
B’

b

a

Fig. -4.45. Calculations of GM for abrupt
shape body.

While most floating bodies are symmet-
rical or semi–symmetrical, there are sit-
uations where the body has a “strange”
and/or un-symmetrical body. Consider the
first strange body that has an abrupt step
change as shown in Figure 4.45. The body
weight doesn’t change during the rotation
that the green area on the left and the
green area on right are the same (see Fig-
ure 4.45). There are two situations that
can occur. After the tilting, the upper part
of the body is above the liquid or part of
the body is submerged under the water.
The mathematical condition for the border
is when b = 3 a. For the case of b < 3 a
the calculation of moment of inertia are similar to the previous case. The moment
created by change in the displaced liquid (area) act in the same fashion as the before.
The center of the moment is needed to be found. This point is the intersection of
the liquid line with the brown middle line. The moment of inertia should be calculated
around this axis.

For the case where b < 3 a x some part is under the liquid. The amount of area
under the liquid section depends on the tilting angle. These calculations are done as
if none of the body under the liquid. This point is intersection point liquid with lower
body and it is needed to be calculated. The moment of inertia is calculated around this
point (note the body is “ended” at end of the upper body). However, the moment to
return the body is larger than actually was calculated and the bodies tend to be more
stable (also for other reasons).



136 CHAPTER 4. FLUIDS STATICS

4.6.1.5 Neutral frequency of Floating Bodies

This case is similar to pendulum (or mass attached to spring). The governing equation
for the pendulum is

`β̈ − g β = 0 (4.174)

Where here ` is length of the rode (or the line/wire) connecting the mass with the
rotation point. Thus, the frequency of pendulum is 1

2 π

√
g
` which measured in Hz. The

period of the cycle is 2 π
√

`/g. Similar situation exists in the case of floating bodies.
The basic differential equation is used to balance and is

rotation︷︸︸︷
Iβ̈ −

rotating moment︷ ︸︸ ︷
V ρs GM β = 0 (4.175)

In the same fashion the frequency of the floating body is

1
2 π

√
V ρs GM

Ibody
(4.176)

and the period time is

2 π

√
Ibody

V ρs GM
(4.177)

In general, the larger GM the more stable the floating body is. Increase in GM
increases the frequency of the floating body. If the floating body is used to transport
humans and/or other creatures or sensitive cargo it requires to reduce the GM so that
the traveling will be smoother.

4.6.2 Surface Tension

The surface tension is one of the mathematically complex topic and related to many
phenomena like boiling, coating, etc. In this section, only simplified topics like constant
value will be discussed.

In one of the early studies of the surface tension/pressure was done by Torricelli16.
In this study he suggest construction of the early barometer. In barometer is made from
a tube sealed on one side. The tube is filled with a liquid and turned upside down into
the liquid container.The main effect is the pressure difference beween the two surfaces
(in the tube and out side the tune). However, the surface tension affects the high. This
effect is large for very small diameters.

16Evangelista Torricelli October 15, 1608 October 25, 1647 was an Italian physicist best known for
his invention of the barometer.
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Example 4.29:
In interaction of the molecules shown in Figure ? describe the existence of surface
tension. Explain why this description is erroneous?

Solution

The upper layer of the molecules have unbalanced force towards the liquid phase. New-
ton’s law states when there is unbalanced force, the body should be accelerate. However,
in this case, the liquid is not in motion. Thus, the common explanation is wrong.

End Solution

Fig. -4.46. A heavy needle is floating on a liquid.

Example 4.30:
Needle is made of steel and is heavier than water and many other liquids. However,
the surface tension between the needle and the liquid hold the needle above the liquid.
After certain diameter, the needle cannot be held by the liquid. Calculate the maximum
diameter needle that can be inserted into liquid without drowning.

Solution

Under Construction
End Solution

4.7 Rayleigh–Taylor Instability

Rayleigh–Taylor instability (or RT instability) is named after Lord Rayleigh and G. I.
Taylor. There are situations where a heavy liquid layer is placed over a lighter fluid
layer. This situation has engineering implications in several industries. For example in
die casting, liquid metal is injected in a cavity filled with air. In poor designs or other
situations, some air is not evacuated and stay in small cavity on the edges of the shape
to be casted. Thus, it can create a situation where the liquid metal is above the air but
cannot penetrate into the cavity because of instability.

This instability deals with a dense, heavy fluid that is being placed above a lighter
fluid in a gravity field perpendicular to interface. Example for such systems are dense
water over oil (liquid–liquid), or water over air(gas–liquid). The original Rayleigh’s
paper deals with the dynamics and density variations. For example, density variations
according to the bulk modulus (see section 4.3.3.2) are always stable but unstable of
the density is in the reversed order.
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Supposed that a liquid density is arbitrary function of the height. This distortion
can be as a result of heavy fluid above the lighter liquid. This analysis asks the question
of what happen when a small amount of liquid from the above layer enter into the
lower layer? Whether this liquid continue and will grow or will it return to its original
conditions? The surface tension is the opposite mechanism that will returns the liquid
to its original place. This analysis is referred to the case of infinite or very large surface.
The simplified case is the two different uniform densities. For example a heavy fluid
density, ρL, above lower fluid with lower density, ρG.

For perfectly straight interface, the heavy fluid will stay above the lighter fluid. If
the surface will be disturbed, some of heavy liquid moves down. This disturbance can
grow or returned to its original situation. This condition is determined by competing
forces, the surface density, and the buoyancy forces. The fluid above the depression
is in equilibrium with the sounding pressure since the material is extending to infinity.
Thus, the force that acting to get the above fluid down is the buoyancy force of the
fluid in the depression.

σ
σ

h

x

L

Fig. -4.47. Description of depression to explain
the Rayleigh–Taylor instability.

The depression is returned to its
original position if the surface forces are
large enough. In that case, this situation
is considered to be stable. On the other
hand, if the surface forces (surface ten-
sion) are not sufficient, the situation is
unstable and the heavy liquid enters into
the liquid fluid zone and vice versa. As
usual there is the neutral stable when the forces are equal. Any continues function can
be expanded in series of cosines. Thus, example of a cosine function will be exam-
ined. The conditions that required from this function will be required from all the other
functions. The disturbance is of the following

h = −hmax cos
2 π x

L
(4.178)

where hmax is the maximum depression and L is the characteristic length of the
depression. The depression has different radius as a function of distance from the
center of the depression, x. The weakest point is at x = 0 because symmetrical reasons
the surface tension does not act against the gravity as shown in Figure (4.47). Thus, if
the center point of the depression can “hold” the intrusive fluid then the whole system
is stable.

The radius of any equation is expressed by equation (1.57). The first derivative
of cos around zero is sin which is approaching zero or equal to zero. Thus, equation
(1.57) can be approximated as

1
R

=
d2h

dx2
(4.179)

For equation (4.178) the radius is

1
R

= −4 π2 hmax

L2
(4.180)
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According to equation (1.46) the pressure difference or the pressure jump is due to the
surface tension at this point must be

PH − PL =
4 hmax σ π2

L2
(4.181)

The pressure difference due to the gravity at the edge of the disturbance is then

PH − PL = g (ρH − ρL)hmax (4.182)

Comparing equations (4.181) and (4.182) show that if the relationship is

4 σ π2

L2
> g (ρH − ρL) (4.183)

It should be noted that hmax is irrelevant for this analysis as it is canceled. The point
where the situation is neutral stable

Lc =

√
4 π2σ

g (ρH − ρL)
(4.184)

An alternative approach to analyze this instability is suggested here. Consider the
situation described in Figure 4.48. If all the heavy liquid “attempts” to move straight
down, the lighter liquid will “prevent” it. The lighter liquid needs to move up at the
same time but in a different place. The heavier liquid needs to move in one side and the
lighter liquid in another location. In this process the heavier liquid “enter” the lighter
liquid in one point and creates a depression as shown in Figure 4.48.

σ σ
θ

2 r

Fig. -4.48. Description of depression to explain
the instability.

To analyze it, considered two con-
trol volumes bounded by the blue lines in
Figure 4.48. The first control volume is
made of a cylinder with a radius r and
the second is the depression below it. The
“extra” lines of the depression should be
ignored, they are not part of the control
volume. The horizontal forces around the
control volume are canceling each other.
At the top, the force is atmospheric pres-
sure times the area. At the cylinder bot-
tom, the force is ρ g h × A. This acts
against the gravity force which make the
cylinder to be in equilibrium with its surroundings if the pressure at bottom is indeed
ρ g h.

For the depression, the force at the top is the same force at the bottom of the
cylinder. At the bottom, the force is the integral around the depression. It can be
approximated as a flat cylinder that has depth of r π/4 (read the explanation in the
example 4.21) This value is exact if the shape is a perfect half sphere. In reality, the error
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is not significant. Additionally when the depression occurs, the liquid level is reduced a
bit and the lighter liquid is filling the missing portion. Thus, the force at the bottom is

Fbottom ∼ π r2
[(π r

4
+ h

)
(ρL − ρG) g + Patmos

]
(4.185)

The net force is then

Fbottom ∼ π r2
(π r

4

)
(ρL − ρG) g (4.186)

The force that hold this column is the surface tension. As shown in Figure 4.48, the
total force is then

Fσ = 2 π r σ cos θ (4.187)

The forces balance on the depression is then

2 π r σ cos θ ∼ π r2
(π r

4

)
(ρL − ρG) g (4.188)

The radius is obtained by

r ∼
√

2 π σ cos θ

(ρL − ρG) g
(4.189)

The maximum surface tension is when the angle, θ = π/2. At that case, the radius is

r ∼
√

2 π σ

(ρL − ρG) g
(4.190)

Fig. -4.49. The cross section of the interface. The purple color represents the maximum heavy
liquid raising area. The yellow color represents the maximum lighter liquid that are “going
down.”

The maximum possible radius of the depression depends on the geometry of the
container. For the cylindrical geometry, the maximum depression radius is about half
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for the container radius (see Figure 4.49). This radius is limited because the lighter
liquid has to enter at the same time into the heavier liquid zone. Since the “exchange”
volumes of these two process are the same, the specific radius is limited. Thus, it can
be written that the minimum radius is

rmintube = 2

√
2 π σ

g (ρL − ρG)
(4.191)

The actual radius will be much larger. The heavier liquid can stay on top of
the lighter liquid without being turned upside down when the radius is smaller than
the equation 4.191. This analysis introduces a new dimensional number that will be
discussed in a greater length in the Dimensionless chapter. In equation (4.191) the
angle was assumed to be 90 degrees. However, this angle is never can be obtained.
The actual value of this angle is about π/4 to π/3 and in only extreme cases the
angle exceed this value (considering dynamics). In Figure 4.49, it was shown that the
depression and the raised area are the same. The actual area of the depression is only
a fraction of the interfacial cross section and is a function. For example,the depression
is larger for square area. These two scenarios should be inserting into equation 4.168
by introducing experimental coefficient.

Example 4.31:
Estimate the minimum radius to insert liquid aluminum into represent tube at temper-
ature of 600[K]. Assume that the surface tension is 400[mN/m]. The density of the
aluminum is 2400kg/m3.

Solution

The depression radius is assume to be significantly smaller and thus equation (4.190)
can be used. The density of air is negligible as can be seen from the temperature
compare to the aluminum density.

r ∼

√√√√ 8 π

σ︷︸︸︷
0.4

2400× 9.81
The minimum radius is r ∼ 0.02[m] which demonstrates the assumption of h >> r
was appropriate.

End Solution

Open Question by April 15, 2010

The best solution of the following question will win 18 U.S. dollars and your name
will be associated with the solution in this book.

Example 4.32:
A canister shown in Figure 4.50 has three layers of different fluids with different densities.
Assume that the fluids do not mix. The canister is rotate with circular velocity, ω.
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Z

L1

L2

L3

Fig. -4.50. Three liquids layers under rotation with various critical situations.

Describe the interface of the fluids consider all the limiting cases. Is there any difference
if the fluids are compressible? Where is the maximum pressure points? For the case
that the fluids are compressible, the canister top center is connected to another tank
with equal pressure to the canister before the rotation (the connection point). What
happen after the canister start to be rotated? Calculated the volume that will enter or
leave, for known geometries of the fluids. Use the ideal gas model. You can assume
that the process is isothermal. Is there any difference if the process is isentropic? If so,
what is the difference?

4.8 Qualetive questions

These qualetitive questions are for advance students and for those who would like to
prepare themself prelimanry examination (Ph. D. examinations).

1. The atmosphere has different thickness in different locations. Where will be
atmosphere thicknesss larger in the equator or the north pole? Explain your
reasoning for the difference. How would you estimate the difference between the
two locations.

2. The author’s daughther (8 years old) that fluid mechanics make no sence. For
example, she points out that warm air raise and therefor the warm spont in a
house is the top floor (that is correct in 4 story home). So why when there is
snow on high mountains? It must be that the temperature is below frizing point
on the top of the mountain (see for example Mount Kilimanjaro, Kenya). How
would you explain this situation? Hint, you should explain this phenomenon using
only concepts that where develped in this chapter.

3. The surface of the ocean has spherical shape. The stability analysis that was
discussed in this chapter was based on the assumption that surface is straight.
How in your opinion the effec of the surface curviture affects the stability analysis.
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4. If the gravity was change due the surface curviture what is the effect on the
stablity.

5. A car is accelarated (increase of velocity) in an include surface upwards. Draw the
constant pressure line. What will constant pressure lines if the car will be driven
downwords.

6. A symmetrical cylinder filled with liquid is rotating around its center. What are
the directions of the forces that acting on cylinder. What are the direction of the
force if the cylinder is not symetrical?
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CHAPTER 5

The Control Volume and Mass
Conservation

5.1 Introduction

This chapter presents a discussion on the control volume and will be focused on the
conservation of the mass. When the fluid system moves or changes, one wants to find
or predict the velocities in the system. The main target of such analysis is to find
the value of certain variables. This kind of analysis is reasonable and it referred to in
the literature as the Lagrangian Analysis. This name is in honored J. L. Langrange
(1736–1813) who formulated the equations of motion for the moving fluid particles.

Even though this system looks reasonable, the Lagrangian system turned out to be
difficult to solve and to analyze. This method applied and used in very few cases. The
main difficulty lies in the fact that every particle has to be traced to its original state.
Leonard Euler (1707–1783) suggested an alternative approach. In Euler’s approach the
focus is on a defined point or a defined volume. This methods is referred as Eulerian
method.

system

control
volume

c

a

b

Fig. -5.1. Control volume and system before and after
motion.

The Eulerian method fo-
cuses on a defined area or loca-
tion to find the needed informa-
tion. The use of the Eulerian
methods leads to a set differenti-
ation equations that is referred to
as Navier–Stokes equations which
are commonly used. These dif-
ferential equations will be used in
the later part of this book. Ad-

147



148 CHAPTER 5. MASS CONSERVATION

ditionally, the Eulerian system leads to integral equations which are the focus of this
part of the book. The Eulerian method plays well with the physical intuition of most
people. This methods has its limitations and for some cases the Lagrangian is preferred
(and sometimes the only possibility). Therefore a limited discussion on the Lagrangian
system will be presented (later version).

Lagrangian equations are associated with the system while the Eulerian equation
are associated with the control volume. The difference between the system and the
control volume is shown in Figure 5.1. The green lines in Figure 5.1 represent the
system. The red dotted lines are the control volume. At certain time the system and
the control volume are identical location. After a certain time, some of the mass in the
system exited the control volume which are marked “a” in Figure 5.1. The material
that remained in the control volume is marked as “b”. At the same time, the control
gains some material which is marked as “c”.

5.2 Control Volume

The Eulerian method requires to define a control volume (some time more than one).
The control volume is a defined volume that was discussed earlier. The control volume
is differentiated into two categories of control volumes, non–deformable and deformable.

Non–deformable control volume is a control volume which is fixed in
space relatively to an one coordinate system. This coordinate system may
be in a relative motion to another (almost absolute) coordinate system.

Deformable control volume is a volume having part of all of its bound-
aries in motion during the process at hand.

Fig. -5.2. Control volume of a moving
piston with in and out flow.

In the case where no mass crosses the bound-
aries, the control volume is a system. Every control
volume is the focus of the certain interest and will
be dealt with the basic equations, mass, momen-
tum, energy, entropy etc.

Two examples of control volume are pre-
sented to illustrate difference between a deformable
control volume and non–deformable control vol-
ume. Flow in conduits can be analyzed by looking
in a control volume between two locations. The
coordinate system could be fixed to the conduit.
The control volume chosen is non-deformable con-
trol volume. The control volume should be chosen so that the analysis should be simple
and dealt with as less as possible issues which are not in question. When a piston
pushing gases a good choice of control volume is a deformable control volume that is a
head the piston inside the cylinder as shown in Figure 5.2.
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5.3 Continuity Equation

In this chapter and the next three chapters, the conservation equations will be applied
to the control volume. In this chapter, the mass conservation will be discussed. The
system mass change is

D msys

Dt
=

D

Dt

∫

Vsys

ρdV = 0 (5.1)

The system mass after some time, according Figure 5.1, is made of

msys = mc.v. + ma −mc (5.2)

The change of the system mass is by definition is zero. The change with time (time
derivative of equation (5.2)) results in

0 =
D msys

Dt
=

d mc.v.

dt
+

dma

dt
− dmc

dt
(5.3)

The first term in equation (5.3) is the derivative of the mass in the control volume and
at any given time is

d mc.v.(t)
dt

=
d

dt

∫

Vc.v.

ρ dV (5.4)

and is a function of the time.
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Fig. -5.3. Schematics of
velocities at the interface.

The interface of the control volume can move.
The actual velocity of the fluid leaving the control vol-
ume is the relative velocity (see Figure 5.3). The rela-
tive velocity is

−→
Ur =

−→
Uf −−→Ub (5.5)

Where Uf is the liquid velocity and Ub is the boundary
velocity (see Figure 5.3). The velocity component that
is perpendicular to the surface is

Urn = −n̂ · −→Ur = Ur cos θ (5.6)

Where n̂ is an unit vector perpendicular to the surface. The convention of direction
is taken positive if flow out the control volume and negative if the flow is into the
control volume. The mass flow out of the control volume is the system mass that is
not included in the control volume. Thus, the flow out is

d ma

dt
=

∫

Scv

ρs UrndA (5.7)
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It has to be emphasized that the density is taken at the surface thus the subscript s.
In the same manner, the flow rate in is

dmb

dt
=

∫

Sc.v.

ρs UrndA (5.8)

It can be noticed that the two equations (5.8) and (5.7) are similar and can be combined,
taking the positive or negative value of Urn with integration of the entire system as

dma

dt
− dmb

dt
=

∫

Scv

ρs Urn dA (5.9)

applying negative value to keep the convention. Substituting equation (5.9) into
equation (5.3) results in

d

dt

∫

c.v.

ρsdV = −
∫

Scv

ρ Urn dA

Continuity

(5.10)

Equation (5.10) is essentially accounting of the mass. Again notice the negative sign in
surface integral. The negative sign is because flow out marked positive which reduces
of the mass (negative derivative) in the control volume. The change of mass change
inside the control volume is net flow in or out of the control system.

L

X
dx

Fig. -5.4. Schematics of flow in in pipe with varying density as a function time for example
5.1.

The next example is provided to illustrate this concept.

Example 5.1:
The density changes in a pipe, due to temperature variation and other reasons, can be
approximated as

ρ(x, t)
ρ0

=
(
1− x

L

)2

cos
t

t0
.
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The conduit shown in Figure 5.4 length is L and its area is A. Express the mass flow
in and/or out, and the mass in the conduit as function of time. Write the expression
for the mass change in the pipe.

Solution

Here it is very convenient to choose a non-deformable control volume that is inside the
conduit dV is chosen as π R2 dx. Using equation (5.10), the flow out (or in) is

d

dt

∫

c.v.

ρdV =
d

dt

∫

c.v.

ρ(t)︷ ︸︸ ︷
ρ0

(
1− x

L

)2

cos
(

t

t0

) dV︷ ︸︸ ︷
π R2 dx

The density is not a function of radius, r and angle, θ and they can be taken out the
integral as

d

dt

∫

c.v.

ρdV = π R2 d

dt

∫

c.v.

ρ0

(
1− x

L

)2

cos
(

t

t0

)
dx

which results in

Flow Out =

A︷︸︸︷
π R2 d

dt

∫ L

0

ρ0

(
1− x

L

)2

cos
t

t0
dx = −π R2 L ρ0

3 t0
sin

(
t

t0

)

The flow out is a function of length, L, and time, t, and is the change of the mass in
the control volume.

End Solution

5.3.1 Non Deformable Control Volume

When the control volume is fixed with time, the derivative in equation (5.10) can enter
the integral since the boundaries are fixed in time and hence,

∫

Vc.v.

d ρ

dt
dV = −

∫

Sc.v.

ρUrn dA

Continuity with Fixed b.c.

(5.11)

Equation (5.11) is simpler than equation (5.10).

5.3.2 Constant Density Fluids

Further simplifications of equations (5.10) can be obtained by assuming constant density
and the equation (5.10) become conservation of the volume.
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5.3.2.1 Non Deformable Control Volume

For this case the volume is constant therefore the mass is constant, and hence the mass
change of the control volume is zero. Hence, the net flow (in and out) is zero. This
condition can be written mathematically as

=0︷︸︸︷
d

∫

dt
−→

∫

Sc.v.

VrndA = 0 (5.12)

or in a more explicit form as

∫

Sin

Vrn dA =
∫

Sout

Vrn dA = 0

Steady State Continuity

(5.13)

Notice that the density does not play a role in this equation since it is canceled out.
Physically, the meaning is that volume flow rate in and the volume flow rate out have
to equal.

5.3.2.2 Deformable Control Volume

The left hand side of question (5.10) can be examined further to develop a simpler
equation by using the extend Leibniz integral rule for a constant density and result in

d

dt

∫

c.v.

ρ dV =

thus, =0︷ ︸︸ ︷
∫

c.v.

=0︷︸︸︷
d ρ

dt
dV +ρ

∫

Sc.v.

n̂ · Ub dA = ρ

∫

Sc.v.

Ubn dA (5.14)

where Ub is the boundary velocity and Ubn is the normal component of the boundary
velocity.

∫

Sc.v.

Ubn dA =
∫

Sc.v.

Urn dA

Steady State Continuity Deformable

(5.15)

The meaning of the equation (5.15) is the net growth (or decrease) of the Control
volume is by net volume flow into it. Example 5.2 illustrates this point.

Example 5.2:
Liquid fills a bucket as shown in Figure 5.5. The average velocity of the liquid at the
exit of the filling pipe is Up and cross section of the pipe is Ap. The liquid fills a
bucket with cross section area of A and instantaneous height is h. Find the height as
a function of the other parameters. Assume that the density is constant and at the
boundary interface Aj = 0.7 Ap. And where Aj is the area of jet when touching the
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h

AUb

Up

Ap

UjAj

Fig. -5.5. Filling of the bucket and choices of the deformable control volumes for example 5.2.

liquid boundary in bucket. The last assumption is result of the energy equation (with
some influence of momentum equation). The relationship is function of the distance of
the pipe from the boundary of the liquid. However, this effect can be neglected for this
range which this problem. In reality, the ratio is determined by height of the pipe from
the liquid surface in the bucket. Calculate the bucket liquid interface velocity.

Solution

This problem requires two deformable control volumes. The first control is around the
jet and second is around the liquid in the bucket. In this analysis, several assumptions
must be made. First, no liquid leaves the jet and enters the air. Second, the liquid in
the bucket has a straight surface. This assumption is a strong assumption for certain
conditions but it will be not discussed here since it is advance topic. Third, there are
no evaporation or condensation processes. Fourth, the air effects are negligible. The
control volume around the jet is deformable because the length of the jet shrinks with
the time. The mass conservation of the liquid in the bucket is

boundary change︷ ︸︸ ︷∫

c.v.

Ubn dA =

flow in︷ ︸︸ ︷∫

c.v.

Urn dA

where Ubn is the perpendicular component of velocity of the boundary. Substituting
the known values for Urn results in

∫

c.v.

Ub dA =
∫

c.v.

Urn︷ ︸︸ ︷
(Uj + Ub) dA
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The integration can be carried when the area of jet is assumed to be known as

Ub A = Aj (Uj + Ub) (5.II.a)

To find the jet velocity, Uj , the second control volume around the jet is used as the
following

flow
in︷ ︸︸ ︷

Up Ap−

flow
out︷ ︸︸ ︷

Aj (Ub + Uj) =

boundary
change︷ ︸︸ ︷
−Aj Ub

(5.II.b)

The above two equations (5.II.a) and (5.II.b) are enough to solve for the two unknowns.
Substituting the first equation, (5.II.a) into (5.II.b) and using the ratio of Aj = 0.7 Ap

results
Up Ap − Ub A = −0.7 Ap Ub (5.II.c)

The solution of equation (5.II.c) is

Ub =
Ap

A− 0.7 Ap

It is interesting that many individuals intuitively will suggest that the solution is UbAp/A.
When examining solution there are two limits. The first limit is when Ap = A/0.7 which
is

Ub =
Ap

0
= ∞

The physical meaning is that surface is filled instantly. The other limit is that and
Ap/A −→ 0 then

Ub =
Ap

A
which is the result for the “intuitive” solution. It also interesting to point out that if
the filling was from other surface (not the top surface), e.g. the side, the velocity will
be Ub = Up in the limiting case and not infinity. The reason for this difference is that
the liquid already fill the bucket and has not to move into bucket.

End Solution

Example 5.3:
Balloon is attached to a rigid supply in which is supplied by a constant the mass rate,
mi. Calculate the velocity of the balloon boundaries assuming constant density.

Solution

The applicable equation is
∫

c.v.

Ubn dA =
∫

c.v.

Urn dA

The entrance is fixed, thus the relative velocity, Urn is

Urn =
{ −Up @ the valve

0 every else
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Assume equal distribution of the velocity in balloon surface and that the center of the
balloon is moving, thus the velocity has the following form

Ub = Ux x̂ + Ubr r̂

Where x̂ is unit coordinate in x direction and Ux is the velocity of the center and where
r̂ is unit coordinate in radius from the center of the balloon and Ubr is the velocity in
that direction. The right side of equation (5.15) is the net change due to the boundary
is

∫

Sc.v.

(Ux x̂ + Ubr r̂) · n̂ dA =

center movement︷ ︸︸ ︷∫

Sc.v.

(Ux x̂) · n̂ dA +

net boundary change︷ ︸︸ ︷∫

Sc.v.

(Ubr r̂) · n̂ dA

The first integral is zero because it is like movement of solid body and also yield this
value mathematically (excises for mathematical oriented student). The second integral
(notice n̂ = r̂) yields ∫

Sc.v.

(Ubr r̂) · n̂ dA = 4 π r2 Ubr

Substituting into the general equation yields

ρ

A︷ ︸︸ ︷
4 π r2 Ubr = ρUp Ap = mi

Hence,

Ubr =
mi

ρ 4 π r2

The center velocity is (also) exactly Ubr. The total velocity of boundary is

Ut =
mi

ρ 4 π r2
(x̂ + r̂)

It can be noticed that the velocity at the opposite to the connection to the rigid pipe
which is double of the center velocity.

End Solution

5.3.2.3 One–Dimensional Control Volume

Additional simplification of the continuity equation is of one dimensional flow. This
simplification provides very useful description for many fluid flow phenomena. The
main assumption made in this model is that the proprieties in the across section are
only function of x coordinate . This assumptions leads

∫

A2

ρ2 U2 dA−
∫

A1

ρ1 U1 dA =
d

dt

∫

V (x)

ρ(x)

dV︷ ︸︸ ︷
A(x) dx (5.16)
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When the density can be considered constant equation (5.16) is reduced to
∫

A2

U2 dA−
∫

A1

U1 dA =
d

dt

∫
A(x)dx (5.17)

For steady state but with variations of the velocity and variation of the density reduces
equation (5.16) to become

∫

A2

ρ2 U2 dA =
∫

A1

ρ1 U1 dA (5.18)

For steady state and uniform density and velocity equation (5.18) reduces further to

ρ1 A1 U1 = ρ2 A2 U2 (5.19)

For incompressible flow (constant density), continuity equation is at its minimum form
of

U1 A1 = A2 U2 (5.20)

The next example is of semi one–dimensional example to illustrate equation (5.16).

h
min

Fig. -5.6. Height of the liquid for example 5.4.

Example 5.4:
Liquid flows into tank in a constant mass flow rate of a. The mass flow rate out is
function of the height. First assume that qout = b h second Assume as qout = b

√
h.

For the first case, determine the height, h as function of the time. Is there a critical
value and then if exist find the critical value of the system parameters. Assume that
the height at time zero is h0. What happen if the h0 = 0?
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Solution

The control volume for both cases is the same and it is around the liquid in the tank.
It can be noticed that control volume satisfy the demand of one dimensional since the
flow is only function of x coordinate. For case one the right hand side term in equation
(5.16) is

ρ
d

dt

∫ L

0

h dx = ρL
dh

dt

Substituting into equation equation (5.16) is

ρL
dh

d t
=

flow out︷︸︸︷
b1 h −

flow in︷︸︸︷
mi

solution is

h =

homogeneous solution︷ ︸︸ ︷
mi

b1
e− b1 t

ρ L +

private solution︷ ︸︸ ︷
c1e

b1 t
ρ L

The solution has the homogeneous solution (solution without the mi) and the solution
of the mi part. The solution can rearranged to a new form (a discussion why this form
is preferred will be provided in dimensional chapter).

h b1

m1
= e− b1 t

ρ L + ce b1 t
ρ L

With the initial condition that at h(t = 0) = h0 the constant coefficient can be found
as

h0 b1

m1
= 1− c =⇒ c = 1− h0 b1

mi

which the solution is

h b1

m1
= e− b1 t

ρ L +
[
1− h0 b1

mi

]
e b1 t

ρ L

It can be observed that if 1 = h0 b1
mi

is the critical point of this solution. If the term h0 b1
mi

is larger than one then the solution reduced to a negative number. However, negative
number for height is not possible and the height solution approach zero. If the reverse
case appeared, the height will increase. Essentially, the critical ratio state if the flow in
is larger or lower than the flow out determine the condition of the height.

For second case, the governing equation (5.16) is

ρL
dh

d t
=

flow out︷︸︸︷
b
√

h −
flow in︷︸︸︷

mi

with the general solution of

ln

[(√
h b

mi
− 1

)
mi

ρL

]
+

√
h b

mi
− 1 = (t + c)

√
h b

2 ρ L
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The constant is obtained when the initial condition that at h(t = 0) = h0 and it left as
exercise for the reader.

End Solution

5.4 Reynolds Transport Theorem
It can be noticed that the same derivations carried for the density can be carried for
other intensive properties such as specific entropy, specific enthalpy. Suppose that g is
intensive property (which can be a scalar or a vector) undergoes change with time. The
change of accumulative property will be then

D

Dt

∫

sys

f ρdV =
d

dt

∫

c.v.

f ρdV +
∫

c.v

f ρ UrndA (5.21)

This theorem named after Reynolds, Osborne, (1842-1912) which is actually a three
dimensional generalization of Leibniz integral rule1. To make the previous derivation
clearer, the Reynolds Transport Theorem will be reproofed and discussed. The ideas
are the similar but extended some what.

Leibniz integral rule2 is an one dimensional and it is defined as

d

dy

∫ x2(y)

x1(y)

f(x, y) dx =
∫ x2(y)

x1(y)

∂f

∂y
dx + f(x2, y)

dx2

dy
− f(x1, y)

dx1

dy
(5.22)

Initially, a proof will be provided and the physical meaning will be explained. Assume
that there is a function that satisfy the following

G(x, y) =
∫ x

f (α, y) dα (5.23)

Notice that lower boundary of the integral is missing and is only the upper limit of the
function is present3. For its derivative of equation (5.23) is

f(x, y) =
∂G

∂x
(5.24)

differentiating (chain rule d uv = u dv + v du) by part of left hand side of the Leibniz
integral rule (it can be shown which are identical) is

d [G(x2, y)−G(x1, y)]
dy

=

1︷ ︸︸ ︷
∂G

∂x2

dx2

dy
+

2︷ ︸︸ ︷
∂G

∂y
(x2, y)−

3︷ ︸︸ ︷
∂G

∂x1

dx1

dy
−

4︷ ︸︸ ︷
∂G

∂y
(x1, y) (5.25)

1These papers can be read on-line at http://www.archive.org/details/papersonmechanic01reynrich.
2This material is not necessarily but is added her for completeness. This author find material just

given so no questions will be asked.
3There was a suggestion to insert arbitrary constant which will be canceled and will a provide

rigorous proof. This is engineering book and thus, the exact mathematical proof is not the concern
here. Nevertheless, if there will be a demand for such, it will be provided.
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The terms 2 and 4 in equation (5.25) are actually (the x2 is treated as a different
variable)

∫ x2(y)

x1(y)

∂ f(x, y)
∂y

dx (5.26)

The first term (1) in equation (5.25) is

∂G

∂x2

dx2

dy
= f(x2, y)

dx2

dy
(5.27)

The same can be said for the third term (3). Thus this explanation is a proof the
Leibniz rule.

The above “proof” is mathematical in nature and physical explanation is also
provided. Suppose that a fluid is flowing in a conduit. The intensive property, f is in-
vestigated or the accumulative property, F . The interesting information that commonly
needed is the change of the accumulative property, F , with time. The change with time
is

DF

Dt
=

D

Dt

∫

sys

ρ f dV (5.28)

For one dimensional situation the change with time is

DF

Dt
=

D

Dt

∫

sys

ρ f A(x)dx (5.29)

If two limiting points (for the one dimensional) are moving with a different coordinate
system, the mass will be different and it will not be a system. This limiting condition
is the control volume for which some of the mass will leave or enter. Since the change
is very short (differential), the flow in (or out) will be the velocity of fluid minus the
boundary at x1, Urn = U1 − Ub. The same can be said for the other side. The
accumulative flow of the property in, F , is then

Fin =

F1︷︸︸︷
f1 ρ

dx1
dt︷︸︸︷

Urn (5.30)

The accumulative flow of the property out, F , is then

Fout =

F2︷︸︸︷
f2 ρ

dx2
dt︷︸︸︷

Urn (5.31)

The change with time of the accumulative property, F , between the boundaries is

d

dt

∫

c.v.

ρ(x) f A(x) dA (5.32)
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When put together it brings back the Leibniz integral rule. Since the time variable,
t, is arbitrary and it can be replaced by any letter. The above discussion is one of the
physical meaning the Leibniz rule.

Reynolds Transport theorem is a generalization of the Leibniz rule and thus the
same arguments are used. The only difference is that the velocity has three components
and only the perpendicular component enters into the calculations.

D

DT

∫

sys

f ρdV =
d

dt

∫

c.v

f ρ dV +
∫

Sc.v.

f ρUrn dA

Reynolds Transport

(5.33)

5.5 Examples For Mass Conservation
Several examples are provided to illustrate the topic.

Example 5.5:
Liquid enters a circular pipe with a linear velocity profile as a function of the radius
with maximum velocity of Umax. After magical mixing, the velocity became uniform.
Write the equation which describes the velocity at the entrance. What is the magical
averaged velocity at the exit? Assume no–slip condition.

Solution

The velocity profile is linear with radius. Additionally, later a discussion on relationship
between velocity at interface to solid also referred as the (no) slip condition will be
provided. This assumption is good for most cases with very few exceptions. It will
be assumed that the velocity at the interface is zero. Thus, the boundary condition is
U(r = R) = 0 and U(r = 0) = Umax Therefore the velocity profile is

U(r) = Umax

(
1− r

R

)

Where R is radius and r is the working radius (for the integration). The magical
averaged velocity is obtained using the equation (5.13). For which

∫ R

0

Umax

(
1− r

R

)
2 π r dr = Uave π R2 (5.V.a)

The integration of the equation (5.V.a) is

Umax π
R2

6
= Uave π R2 (5.V.b)

The solution of equation (b) results in average velocity as

Uave =
Umax

6
(5.V.c)

End Solution
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(2)(1)

U0

Edge of B
oundry Layer

L

Fig. -5.7. Boundary Layer control mass.

Example 5.6:
Experiments have shown that a layer of liquid that attached itself to the surface and it
is referred to as boundary layer. The assumption is that fluid attaches itself to surface.
The slowed liquid is slowing the layer above it. The boundary layer is growing with x
because the boundary effect is penetrating further into fluid. A common boundary layer
analysis uses the Reynolds transform theorem. In this case, calculate the relationship
of the mass transfer across the control volume. For simplicity assume slowed fluid has
a linear velocity profile. Then assume parabolic velocity profile as

Ux(y) = 2 U0

[
y

δ
+

1
2

(y

δ

)2
]

and calculate the mass transfer across the control volume. Compare the two different
velocity profiles affecting on the mass transfer.

Solution

Assuming the velocity profile is linear thus, (to satisfy the boundary condition) it will
be

Ux(y) =
U0 y

δ

The chosen control volume is rectangular of L× δ. Where δ is the height of the
boundary layer at exit point of the flow as shown in Figure 5.7. The control volume has
three surfaces that mass can cross, the left, right, and upper. No mass can cross the
lower surface (solid boundary). The situation is steady state and thus using equation
(5.13) results in

x direction︷ ︸︸ ︷
in︷ ︸︸ ︷∫ δ

0

U0 dy−

out︷ ︸︸ ︷∫ δ

0

U0 y

δ
dy =

y direction︷ ︸︸ ︷∫ L

0

Uxdx

It can be noticed that the convention used in this chapter of “in” as negative is not
“followed.” The integral simply multiply by negative one. The above integrals on the
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right hand side can be combined as

∫ δ

0

U0

(
1− y

δ

)
dy =

∫ L

0

Uxdx

the integration results in

U0 δ

2
=

∫ L

0

Uxdx

or for parabolic profile

∫ δ

0

U0 dy −
∫ δ

0

U0

[
y

δ
+

(y

δ

)2
]
dy =

∫ L

0

Uxdx

or ∫ δ

0

U0

[
1− y

δ
−

(y

δ

)2
]

dy = U0

the integration results in

U0 δ

2
=

∫ L

0

Uxdx

End Solution

Example 5.7:
Air flows into a jet engine at 5 kg/sec while fuel flow into the jet is at 0.1 kg/sec.
The burned gases leaves at the exhaust which has cross area 0.1 m2 with velocity of
500 m/sec. What is the density of the gases at the exhaust?

Solution

The mass conservation equation (5.13) is used. Thus, the flow out is ( 5 + 0.1 )
5.1 kg/sec The density is

ρ =
ṁ

AU
=

5.1 kg/sec

0.01 m2 500 m/sec
= 1.02kg/m3

End Solution

The mass (volume) flow rate is given by direct quantity like x kg/sec. However
sometime, the mass (or the volume) is given by indirect quantity such as the effect of
flow. The next example deal with such reversed mass flow rate.

Example 5.8:
The tank is filled by two valves which one filled tank in 3 hours and the second by 6
hours. The tank also has three emptying valves of 5 hours, 7 hours, and 8 hours. The
tank is 3/4 fulls, calculate the time for tank reach empty or full state when all the valves
are open. Is there a combination of valves that make the tank at steady state?
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Solution

Easier measurement of valve flow rate can be expressed as fraction of the tank per hour.
For example valve of 3 hours can be converted to 1/3 tank per hour. Thus, mass flow
rate in is

ṁin = 1/3 + 1/6 = 1/2tank/hour

The mass flow rate out is

ṁout = 1/5 + 1/7 + 1/8 =
131
280

Thus, if all the valves are open the tank will be filled. The time to completely filled the
tank is

1
4

1
2
− 131

280

=
70
159

hour

The rest is under construction.
End Solution

Example 5.9:
Inflated cylinder is supplied in its center with constant mass flow. Assume that the gas
mass is supplied in uniformed way of mi [kg/m/sec]. Assume that the cylinder inflated
uniformly and pressure inside the cylinder is uniform. The gas inside the cylinder obeys
the ideal gas law. The pressure inside the cylinder is linearly proportional to the volume.
For simplicity, assume that the process is isothermal. Calculate the cylinder boundaries
velocity.

Solution

The applicable equation is

increase pressure︷ ︸︸ ︷∫

Vc.v

dρ

dt
dV +

boundary velocity︷ ︸︸ ︷∫

Sc.v.

ρ UbdV =

in or out flow rate︷ ︸︸ ︷∫

Sc.v.

ρUrn dA

Every term in the above equation is analyzed but first the equation of state and volume
to pressure relationship have to be provided.

ρ =
P

R T

and relationship between the volume and pressure is

P = f π Rc
2
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Where Rc is the instantaneous cylinder radius. Combining the above two equations
results in

ρ =
f π Rc

2

R T

Where f is a coefficient with the right dimension. It also can be noticed that boundary
velocity is related to the radius in the following form

Ub =
dRc

dt

The first term requires to find the derivative of density with respect to time which is

dρ

dt
=

d

dt

(
f π Rc

2

R T

)
=

2 f π Rc

R T

Ub︷︸︸︷
dRc

dt

Thus the first term is

∫

Vc.v

dρ

dt

2 π Rc︷︸︸︷
dV =

∫

Vc.v

2 f π Rc

R T
Ub

2 π Rc dRc︷︸︸︷
dV =

4 f π2 Rc
3

3 R T
Ub

The integral can be carried when Ub is independent of the Rc
4 The second term is

∫

Sc.v.

ρUbdA =

ρ︷ ︸︸ ︷
f π Rc

2

R T
Ub

A︷ ︸︸ ︷
2 πRc =

(
f π3 Rc

2

R T

)
Ub

substituting in the governing equation obtained the form of

f π2 Rc
3

R T
Ub +

4 f π2 Rc
3

3 R T
Ub = mi

The boundary velocity is then

Ub =
mi

7 f π2 Rc
3

3 R T

G =
3 mi R T

7 f π2 Rc
3

End Solution

Example 5.10:
A balloon is attached to a rigid supply and is supplied by a constant mass rate, mi.
Assume that gas obeys the ideal gas law. Assume that balloon volume is a linear function
of the pressure inside the balloon such as P = fv V . Where fv is a coefficient describing
the balloon physical characters. Calculate the velocity of the balloon boundaries under
the assumption of isothermal process.

4The proof of this idea is based on the chain differentiation similar to Leibniz rule. When the
derivative of the second part is dUb/dRc = 0.
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Solution

The question is more complicated than Example 5.10. The ideal gas law is

ρ =
P

R T

The relationship between the pressure and volume is

P = fv V =
4 fv π Rb

3

3

The combining of the ideal gas law with the relationship between the pressure and
volume results

ρ =
4 fv π Rb

3

3 R T

The applicable equation is
∫

Vc.v

dρ

dt
dV +

∫

Sc.v.

ρ (Uc x̂ + Ubr̂) dA =
∫

Sc.v.

ρUrn dA

The right hand side of the above equation is
∫

Sc.v.

ρUrn dA = mi

The density change is

dρ

dt
=

12 fv π Rb
2

R T

Ub︷︸︸︷
dRb

dt

The first term is

∫ Rb

0

6=f(r)︷ ︸︸ ︷
12 fv π Rb

2

R T
Ub

dV︷ ︸︸ ︷
4 π r2 dr =

16 fv π2 Rb
5

3 R T
Ub

The second term is

∫

A

4 fv π Rb
3

3 R T
Ub dA =

4 fv π Rb
3

3 R T
Ub

A︷ ︸︸ ︷
4 π Rb

2 =
8 fv π2 Rb

5

3 R T
Ub

Subsisting the two equations of the applicable equation results

Ub =
1
8

mi R T

fv π2 Rb
5

Notice that first term is used to increase the pressure and second the change of the
boundary.
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End Solution

Open Question: Answer must be received by April 15, 2010

The best solution of the following question will win 18 U.S. dollars and your name
will be associated with the solution in this book.

Example 5.11:
Solve example 5.10 under the assumption that the process is isentropic. Also assume
that the relationship between the pressure and the volume is P = fv V 2. What are the
units of the coefficient fv in this problem? What are the units of the coefficient in the
previous problem?

5.6 The Details Picture – Velocity Area Relationship

hℓ

A

Ae

Ue
x

z
y

Fig. -5.8. Control volume usage to calculate
local averaged velocity in three coordinates.

The integral approach is intended to deal
with the “big” picture. Indeed the method
is used in this part of the book for this
purpose. However, there is very little writ-
ten about the usability of this approach to
provide way to calculate the average quan-
tities in the control system. Sometimes
it is desirable to find the averaged veloc-
ity or velocity distribution inside a control
volume. There is no general way to pro-
vide these quantities. Therefore an exam-
ple will be provided to demonstrate the use
of this approach.

Consider a container filled with liq-
uid on which one exit opened and the liquid flows out as shown in Figure 5.8. The
velocity has three components in each of the coordinates under the assumption that
flow is uniform and the surface is straight5. The integral approached is used to calculate
the averaged velocity of each to the components. To relate the velocity in the z direc-
tion with the flow rate out or the exit the velocity mass balance is constructed. A similar
control volume construction to find the velocity of the boundary velocity (height) can
be carried out. The control volume is bounded by the container wall including the exit
of the flow. The upper boundary is surface parallel to upper surface but at Z distance
from the bottom. The mass balance reads

∫

V

dρ

dt
dV +

∫

A

Ubn ρ dA +
∫

A

Urn ρ dA = 0 (5.34)

5The liquid surface is not straight for this kind of problem. However, under certain conditions it is
reasonable to assume straight surface which have been done for this problem.
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For constant density (conservation of volume) equation6 and (h > z) reduces to

∫

A

Urn ρ dA = 0 (5.35)

In the container case for uniform velocity equation 5.35 becomes

Uz A = Ue Ae =⇒ Uz = −Ae

A
Ue (5.36)

It can be noticed that the boundary is not moving and the mass inside does not change
this control volume. The velocity Uz is the averaged velocity downward.

AeUe

x
y

X control Volume
into the page

Y control Volume
into the page Ax

−

Ay
−

Fig. -5.9. Control volume and system before
and after the motion.

The x component of velocity is ob-
tained by using a different control volume.
The control volume is shown in Figure 5.9.
The boundary are the container far from
the flow exit with blue line projection into
page (area) shown in the Figure 5.9. The
mass conservation for constant density of
this control volume is

−
∫

A

Ubn ρ dA +
∫

A

Urn ρ dA = 0

(5.37)

Usage of control volume not included in the previous analysis provides the velocity at
the upper boundary which is the same as the velocity at y direction. Substituting into
(5.37) results in

∫

Ax
−

Ae

A
Ue ρ dA +

∫

Ayz

Ux ρ dA = 0 (5.38)

Where Ax
− is the area shown the Figure under this label. The area Ayz referred to

area into the page in Figure 5.9 under the blow line. Because averaged velocities and
constant density are used transformed equation (5.38) into

Ae

A
Ax

−Ue + Ux

Ayz︷ ︸︸ ︷
Y (x)h = 0 (5.39)

Where Y (x) is the length of the (blue) line of the boundary. It can be notice that the
velocity, Ux is generally increasing with x because Ax

− increase with x.
The calculations for the y directions are similar to the one done for x direction.

The only difference is that the velocity has two different directions. One zone is right
to the exit with flow to the left and one zone to left with averaged velocity to right.
If the volumes on the left and the right are symmetrical the averaged velocity will be
zero.

6The point where (z = h) the boundary term is substituted the flow in term.
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Example 5.12:
Calculate the velocity, Ux for a cross section of circular shape (cylinder).

AeUe

x y
Ax

−

r
(r− x)

α

Y(x)

Fig. -5.10. Circular cross section
for finding Ux and various cross
sections.

Solution

The relationship for this geometry needed to be ex-
pressed. The length of the line Y (x) is

Y (x) = 2 r

√
1−

(
1− x

r

)2
(5.XII.a)

This relationship also can be expressed in the term of
α as

Y (x) = 2 r sin α (5.XII.b)

Since this expression is simpler it will be adapted. When the relationship between
radius angle and x are

x = r(1− sin α) (5.XII.c)

The area Ax
− is expressed in term of α as

Ax
− =

(
α− 1

2
, sin(2α)

)
r2 (5.XII.d)

Thus the velocity, Ux is

Ae

A

(
α− 1

2
sin(2α)

)
r2 Ue + Ux 2 r sin α h = 0 (5.XII.e)

Ux =
Ae

A

r

h

(
α− 1

2 sin(2α)
)

sin α
Ue

(5.XII.f)

Averaged velocity is defined as

Ux =
1
S

∫

S

UdS (5.XII.g)

Where here S represent some length. The same way it can be represented for angle
calculations. The value dS is r cosα. Integrating the velocity for the entire container
and dividing by the angle, α provides the averaged velocity.

Ux =
1
2 r

∫ π

0

Ae

A

r

h

(
α− 1

2 sin(2α)
)

tanα
Ue r dα (5.XII.h)

which results in

Ux =
(π − 1)

4
Ae

A

r

h
Ue (5.XII.i)

End Solution

Example 5.13:
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AeUe

x y

Ay
−

r

(r− x)

X(y)

Fig. -5.11. y velocity for a circular
shape

Calculate the velocity, Uy for a cross
section of circular shape (cylinder). What
is the averaged velocity if only half sec-
tion is used. State your assumptions
and how it similar to the previous ex-
ample.

Solution

The flow out in the x direction is zero because symmetrical reasons. That is the flow
field is a mirror images. Thus, every point has different velocity with the same value in
the opposite direction.

The flow in half of the cylinder either the right or the left has non zero averaged
velocity. The calculations are similar to those in the previous to example 5.12. The
main concept that must be recognized is the half of the flow must have come from one
side and the other come from the other side. Thus, equation (5.39) modified to be

Ae

A
Ax

−Ue + Ux

Ayz︷ ︸︸ ︷
Y (x)h = 0 (5.40)

The integral is the same as before but the upper limit is only to π/2

Ux =
1
2 r

∫ π/2

0

Ae

A

r

h

(
α− 1

2 sin(2α)
)

tan α
Ue r dα (5.XIII.a)

which results in

Ux =
(π − 2)

8
Ae

A

r

h
Ue (5.XIII.b)

End Solution

5.7 More Examples for Mass Conservation

Typical question about the relative velocity that appeared in many fluid mechanics
exams is the following.

Example 5.14:
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Ub = 10[m/sec]Uo = 50[m/sec]

Us = 5[m/sec]

Fig. -5.12. Schematic of the
boat for example 5.14

A boat travels at speed of 10m/sec upstream in a
river that flows at a speed of 5m/s. The inboard
engine uses a pump to suck in water at the front
Ain = 0.2 m2 and eject it through the back of the
boat with exist area of Aout = 0.05 m2. The water
absolute velocity leaving the back is 50m/sec, what
are the relative velocities entering and leaving the
boat and the pumping rate?

Solution

The boat is assumed (implicitly is stated) to be steady state and the density is constant.
However, the calculation have to be made in the frame of reference moving with the
boat. The relative jet discharge velocity is

Urout
= 50− (10 + 5) = 35[m/sec]

The volume flow rate is then

Qout = Aout Urout = 35× 0.05 = 1.75m3/sec

The flow rate at entrance is the same as the exit thus,

Urin =
Aout

Ain
Urout =

0.05
0.2

35 = 8.75m/sec

End Solution

Example 5.15:
Liquid A enters a mixing device depicted in at 0.1 [kg/s]. In same time liquid B enter
the mixing device with a different specific density at 0.05 [kg/s]. The density of liquid A
is 1000[kg/m3] and liquid B is 800[kg/m3]. The results of the mixing is a homogeneous
mixture. Assume incompressible process. Find the average leaving velocity and density
of the mixture leaving through the 2O [cm] diameter pipe. If the mixing device volume
is decreasing (as a piston pushing into the chamber) at rate of .002 [m3/s], what is the
exit velocity? State your assumptions.

Solution

In the first scenario, the flow is steady state and equation (5.11) is applicable

ṁA + ṁB = Qmix ρmix =⇒= 0.1 + 0.05 = 0.15[m] (5.XV.a)

Thus in this case, since the flow is incompressible flow, the total volume flow in is equal
to volume flow out as

Q̇A + Q̇B = Q̇mix =⇒=
ṁA

ρA
+

ṁA

ρA
=

0.10
1000

+
0.05
800
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Thus the mixture density is

ρmix =
ṁA + ṁB

ṁA

ρA
+

ṁB

ρB

= 923.07[kg/m3]
(5.XV.b)

The averaged velocity is then

Umix =
Qmix

Aout
=

ṁA

ρA
+

ṁB

ρB

π 0.012
=

1.625
π

[m/s]
(5.XV.c)

In the case that a piston is pushing the exit density could be changed and fluctuated
depending on the location of the piston. However, if the assumption of well mixed is
still holding the exit density should not affected. The term that should be added to the
governing equation the change of the volume. So governing equation is (5.15).

−Qb ρmix︷ ︸︸ ︷
Ubn Aρb =

in︷ ︸︸ ︷
ṁA + ṁB −

out︷ ︸︸ ︷
ṁmix

(5.XV.d)

That is the mixture device is with an uniform density

−0.002[m/sec] 923.7[kg/m3] = 0.1 + 0.05−mexit (5.XV.e)

mexit = 1.9974[kg/s]

End Solution

Example 5.16:
A syringe apparatus is being use to withdrawn blood7. If the piston is withdrawn at
O.01 [m/s]. At that stage air leaks in around the piston at the rate 0.000001 [m3/s].
What is the average velocity of blood into syringe (at the tip)? The syringe radios is
0.005[m] and the tip radius is 0.0003 [m].

Solution

The situation is unsteady state (in the instinctive c.v. and coordinates) since the mass
in the control volume (the syringe volume is not constant). The chose of the control
volume and coordinate system determine the amount of work. This part of the solution is
art. There are several possible control volumes that can be used to solve the problem.
The two “instinctive control volumes” are the blood with the air and the the whole
volume between the tip and syringe plunger (piston). The first choice seem reasonable

7The author still remember his elementary teacher that was so appalled by the discussion on blood
piping which students in an engineering school were doing. He gave a speech about how inhuman these
engineering students are. I hope that no one will have teachers like him. Yet, it can be observed that
bioengineering is “cool” today while in 40 years ago is a disgusting field.
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since it provides relationship of the total to specific material. In that case, control
volume is the volume syringe tip to the edge of the blood. The second part of the
control volume is the air. For this case, the equation (5.15) is applicable and can be
written as

Utip Atip½½ρb = Ub As½½ρb (5.XVI.a)

In the air side the same equation can used. There several coordinate systems that
can used, attached to plunger, attached to the blood edge, stationary. Notice that
change of the volume do not enter into the calculations because the density of the air
is assumed to be constant. In stationary coordinates two boundaries are moving and
thus

moving b.c.︷ ︸︸ ︷
Uplunger As ρa − Ub As ρb =

in/out︷ ︸︸ ︷
ρaQ̇in

(5.XVI.b)

In the case, the choice is coordinates moving with the plunger, the relative plunger
velocity is zero while the blood edge boundary velocity is Uplunger − Ub. The air
governing equation is

blood b. velocity︷ ︸︸ ︷
(Uplunger − Ub) As ρb =

in/out︷ ︸︸ ︷
ρaQ̇in

(5.XVI.c)

In the case of coordinates are attached to the blood edge similar equation is obtained.
At this stage, there are two unknowns, Ub and Utip, and two equations. Using equations
(5.XVI.a) and (5.XVI.c) results in

Ub = Uplunger − ρa Qin

As ρb

Utip =
Ub As

Atip
=

(
Uplunger − ρa Qin

As ρb

)
As

Atip

(5.XVI.d)

End Solution

Example 5.17:
The apparatus depicted in Figure ?? is referred in the literature sometime as the water–
jet pump. In this device, the water (or another liquid) is pumped throw the inner pipe
at high velocity. The outside pipe is lower pressure which suck the water (other liquid)
into device. Later the two stream are mixed. In this question the what is the mixed
stream averaged velocity with U1 = 4.0[m/s] and U2 = 0.5[m/s]. The cross section
inside and outside radii ratio is r1/r2 = 0.2. Calculate the mixing averaged velocity.

Solution

The situation is steady state and which density of the liquid is irrelevant (because it is
the same at the inside and outside).

U1 A1 + U2 A2 = U3 A3 (5.XVII.a)



5.7. MORE EXAMPLES FOR MASS CONSERVATION 173

The velocity is A3 = A1 + A2 and thus

U3 =
U1 A1 + U2 A2

A3
== U1

A1

A3
+ U2

(
1− A1

A3

)
(5.XVII.b)

End Solution
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CHAPTER 6

Momentum Conservation for
Control Volume

6.1 Momentum Governing Equation

6.1.1 Introduction to Continuous

In the previous chapter, the Reynolds Transport Theorem (RTT) was applied to mass
conservation. Mass is a scalar (quantity without magnitude). This chapter deals with
momentum conservation which is a vector. The Reynolds Transport Theorem (RTT) is
applicable to any quantity and the discussion here will deal with forces that acting on
the control volume. Newton’s second law for single body is as the following

FFF =
d(mUUU)

dt
(6.1)

It can be noticed that bold notation for the velocity is UUU (and not U) to represent that
the velocity has a direction. For several bodies (n), Newton’s law becomes

n∑

i=1

FFF i =
n∑

i=1

d(mUUU)i

dt
(6.2)

The fluid can be broken into infinitesimal elements which turn the above equation (6.2)
into a continuous form of small bodies which results in

n∑

i=1

FFF i =
D

Dt

∫

sys

UUU

element
mass︷︸︸︷

ρ dV (6.3)

175
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Note that the notation D/Dt is used and not d/dt to signify that it referred to a
derivative of the system. The Reynold’s Transport Theorem (RTT) has to be used on
the right hand side.

6.1.2 External Forces

First, the terms on the left hand side, or the forces, have to be discussed. The forces,
excluding the external forces, are the body forces, and the surface forces as the following

FFF total = FFF b + FFF s (6.4)

In this book (at least in this discussion), the main body force is the gravity. The gravity
acts on all the system elements. The total gravity force is

∑
FFF b =

∫

sys

ggg

element
mass︷︸︸︷
ρ dV (6.5)

which acts through the mass center towards the center of earth. After infinitesimal
time the gravity force acting on the system is the same for control volume, hence,

∫

sys

ggg ρ dV =
∫

cv

ggg ρ dV (6.6)

The integral yields a force trough the center mass which has to be found separately.

n̂

with the
surface

perpendicular to
 the surface

Fig. -6.1. The explaination for the direction
relative to surface perpendicular and with the
surface.

In this chapter, the surface forces are
divided into two categories: one perpendi-
cular to the surface and one with the sur-
face direction (in the surface plain see Fig-
ure 6.1.). Thus, it can be written as

∑
FFF s =

∫

c.v.

SnSnSn dA +
∫

c.v.

τ dA (6.7)

Where the surface “force”, SnSnSn, is in the surface direction, and τ are the shear stresses.
The surface “force”, SnSnSn, is made out of two components, one due to viscosity (solid
body) and two consequence of the fluid pressure. Here for simplicity, only the pressure
component is used which is reasonable for most situations. Thus,

SSSn = −PPP n̂ +

∼0︷︸︸︷
SνSνSν (6.8)

Where SνSνSν is perpendicular stress due to viscosity. Again, n̂ is an unit vector outward
of element area and the negative sign is applied so that the resulting force acts on the
body.
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6.1.3 Momentum Governing Equation

The right hand side, according Reynolds Transport Theorem (RTT), is

D

Dt

∫

sys

ρUUUdV =
t

dt

∫

c.v.

ρUUUdV +
∫

c.v.

ρUUUUUUrndA (6.9)

The liquid velocity, UUU , is measured in the frame of reference and UUUrn is the liquid
relative velocity to boundary of the control volume measured in the same frame of
reference.

Thus, the general form of the momentum equation without the external forces is

∫

c.v.

ggg ρ dV −
∫

c.v.

PPP dA +
∫

c.v.

τ · dAdAdA

=
t

dt

∫

c.v.

ρUUUdV +
∫

c.v.

ρUUU UrnUrnUrn dV

Integral Momentum Equation

(6.10)

With external forces equation (6.10) is transformed to

∑
FFF ext +

∫

c.v.

ggg ρ dV−
∫

c.v.

PPP · dAdAdA +
∫

c.v.

τ · dAdAdA =

t

dt

∫

c.v.

ρUUUdV +
∫

c.v.

ρUUU UrnUrnUrndV

Integral Momentum Equation & External Forces

(6.11)

The external forces, Fext, are the forces resulting from support of the control volume
by non–fluid elements. These external forces are commonly associated with pipe, ducts,
supporting solid structures, friction (non-fluid), etc.

Equation (6.11) is a vector equation which can be broken into its three com-
ponents. In Cartesian coordinate, for example in the x coordinate, the components
are

∑
Fx +

∫

c.v.

(
ggg · î

)
ρ dV

∫

c.v.

PPP cos θx dA +
∫

c.v.

τx · dAdAdA =

t

dt

∫

c.v.

ρUUUx dV +
∫

c.v.

ρUUUx ·UUUrndA (6.12)

where θx is the angle between n̂ and î or (n̂ · î).

6.1.4 Momentum Equation in Acceleration System

For accelerate system, the right hand side has to include the following acceleration

aaaacc = ω × (rrr × ω) + 2 U × ω + rrr × ω̇ − aaa0 (6.13)
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Where rrr is the distance from the center of the frame of reference and the add force is

FFF add =
∫

Vc.v.

aaaacc ρ dV (6.14)

Integral of Uniform Pressure on Body

In this kind of calculations, it common to obtain a situation where one of
the term will be an integral of the pressure over the body surface. This
situation is a similar idea that was shown in Section 4.6. In this case the
resulting force due to the pressure is zero to all directions.

6.1.5 Momentum For Steady State and Uniform Flow

The momentum equation can be simplified for the steady state condition as it was
shown in example 6.3. The unsteady term (where the time derivative) is zero.

∑
FFF ext +

∫

c.v.

ggg ρ dV −
∫

c.v.

PPP dA +
∫

c.v.

τ dA =
∫

c.v.

ρUUUUrndA

Integral Steady State Momentum Equation

(6.15)

6.1.5.1 Momentum for For Constant Pressure and Frictionless Flow

Another important sub category of simplification deals with flow under approximation
of the frictionless flow and uniform pressure. This kind of situations arise when friction
(forces) is small compared to kinetic momentum change. Additionally, in these situa-
tions, flow is exposed to the atmosphere and thus (almost) uniform pressure surrounding
the control volume. In this situation, the mass flow rate in and out are equal. Thus,
equation (6.15) is further reduced to

FFF =
∫

out

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂) dA−

∫

in

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂) dA (6.16)

In situations where the velocity is provided and known (remember that density is
constant) the integral can be replaced by

FFF = ṁUUUo − ṁUUU i (6.17)

The average velocity is related to the velocity profile by the following integral

U
2

=
1
A

∫

A

[U(r)]2 dA (6.18)

Equation (6.18) is applicable to any velocity profile and any geometrical shape.
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Example 6.1:
Calculate the average velocity for the given parabolic velocity profile for a circular pipe.

Solution

The velocity profile is

U
( r

R

)
= Umax

[
1−

( r

R

)2
]

(6.I.a)

Substituting equation (6.I.a) into equation (6.18)

U
2

=
1

2 π R2

∫ R

0

[U(r)]2 2 π r dr (6.I.b)

results in

U
2

= (Umax)2
∫ 1

0

(
1− r̄2

)2
r̄dr̄ =

1
6

(Umax)2 (6.I.c)

Thus,

U =
Umax√

6
End Solution

F

y
Uo

Ui

x

θ

Fig a. Schematics of area impinged by a jet

for example 6.2.

F

Ui

Uo

Fig b. Schematics of maximum angle for

impinged by a jet.

Fig. -6.2. Schematics of area impinged by a jet and angle effects.

Example 6.2:
A jet is impinging on a stationary surface by changing only the jet direction (see Figure
6.2). Neglect the friction, calculate the force and the angle which the support has to
apply to keep the system in equilibrium. What is the angle for which maximum force
will be created?
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Solution

Equation (6.11) can be reduced, because it is a steady state, to

FFF =
∫

out

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂) dA−

∫

in

ρUUU

Urn︷ ︸︸ ︷
(UUU · n̂) dA = ṁUoUoUo − ṁUiUiUi

(6.II.a)

It can be noticed that even though the velocity change direction, the mass flow rate
remains constant. Equation (6.II.a) can be explicitly written for the two coordinates.
The equation for the x coordinate is

Fx = ṁ (cos θ Uo − Ui)

or since Ui = Uo

Fx = ṁUi (cos θ − 1)

It can be observed that the maximum force, Fx occurs when cos θ = π. It can be
proven by setting dFx/dθ = 0 which yields θ = 0 a minimum and the previous solution.
Hence

Fx|max = −2 ṁUi

and the force in the y direction is

Fy = ṁUi sin θ

the combined forces are

Ftotal =
√

Fx
2 + Fy

2 = ṁUi

√
(cos θ − 1)2 + sin2 θ

Which results in

Ftotal = ṁUi sin (θ/2)

with the force angle of

tanφ = π − Fy

Fx
=

π

2
− θ

2

For angle between 0 < θ < π the maximum occur at θ = π and the minimum at θ ∼ 0.
For small angle analysis is important in the calculations of flow around thin wings.

End Solution

Example 6.3:
Liquid flows through a symmetrical nozzle as shown in the Figure 6.3 with a mass
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U2 =?

z

A2 = 10[cm2]

U1 = 5[m/sec]
A1 = 50[cm2]

P2 = 1[Bar]

P2 = 3[Bar]

Fig. -6.3. Nozzle schematic for the dis-
cussion on the forces and for example 6.3.

flow rate of 0.01 [gk/sec]. The
entrance pressure is 3[Bar] and the
entrance velocity is 5 [m/sec]. The
exit velocity is uniform but unknown.
The exit pressure is 1[Bar]. The
entrance area is 0.0005[m2] and
the exit area is 0.0001[cm2]. What
is the exit velocity? What is the
force acting the nozzle? Assume
that the density is constant ρ =
1000[kg/m3] and the volume in
the nozzle is 0.0015 [m3].

Solution

The chosen control volume is shown in Figure 6.3. First, the velocity has to be found.
This situation is a steady state for constant density. Then

A1 U1 = A2 U2

and after rearrangement, the exit velocity is

U2 =
A1

A2
U1 =

0.0005
0.0001

× 5 = 25[m/sec]

Equation (6.12) is applicable but should be transformed into the z direction which is

∑
Fz +

∫

c.v.

ggg · k̂ ρ dV +
∫

c.v.

PPP cos θz dA +
∫

c.v.

τ z dA =

=0︷ ︸︸ ︷
t

dt

∫

c.v.

ρUUUz dV +
∫

c.v.

ρUUUz ·UUUrndA

(6.III.a)

The control volume does not cross any solid body (or surface) there is no external
forces. Hence,

=0︷ ︸︸ ︷∑
Fz +

∫

c.v.

ggg · k̂ ρ dV +

liquid
surface︷ ︸︸ ︷∫

c.v.

PPP cos θz dA+

forces on
the nozzle
Fnozzle︷ ︸︸ ︷

solid
surface︷ ︸︸ ︷∫

c.v.

PPP cos θz dA+
∫

c.v.

τ z dA =
∫

c.v.

ρUUUz ·UUUrndA

(6.III.b)
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All the forces that act on the nozzle are combined as

∑
Fnozzle +

∫

c.v.

ggg · k̂ ρ dV +
∫

c.v.

PPP cos θz dA =
∫

c.v.

ρUUUz ·UUUrndA (6.III.c)

The second term or the body force which acts through the center of the nozzle is

FFF b = −
∫

c.v.

ggg · n̂ ρ dV = −g ρVnozzle

Notice that in the results the gravity is not bold since only the magnitude is used. The
part of the pressure which act on the nozzle in the z direction is

−
∫

c.v.

PdA =
∫

1

PdA−
∫

2

PdA = PA|1 − PA|2

The last term in equation (6.III.c) is
∫

c.v.

ρUUUz ·UUUrndA =
∫

A2

U2 (U2) dA−
∫

A1

U1 (U1) dA

which results in ∫

c.v.

ρUUUz ·UUUrndA = ρ
(
U2

2A2 − U1
2A1

)

Combining all transform equation (6.III.c) into

Fz = −g ρVnozzle + PA|2 − PA|1 + ρ
(
U2

2A2 − U1
2A1

)
(6.III.d)

Fz = 9.8× 1000×
End Solution

6.2 Momentum Equation Application

Momentum Equation Applied to Propellers

The propeller is a mechanical devise that is used to increase the fluid momentum. Many
times it is used for propulsion purposes of airplanes, ships and other devices (thrust) as
shown in Figure 6.4. The propeller can be stationary like in cooling tours, fan etc. The
other common used of propeller is mostly to move fluids as a pump.

The propeller analysis of unsteady is complicated due to the difficulty in under-
standing the velocity field. For a steady state the analysis is simpler and used here to
provide an example of steady state. In the Figure 6.4 the fluid flows from the left to
the right. Either it is assumed that some of the fluid enters into the container and fluid
outside is not affected by the propeller. Or there is a line (or surface) in which the fluid
outside changes only the flow direction. This surface is called slip surface. Of course it
is only approximation but is provided a crude tool. Improvements can be made to this
analysis. Here, this analysis is used for academic purposes.
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U2
U1

Liquid

1 3 4 2

Fig. -6.4. Propeller schematic to explain the change of mo-
mentum due to velocity.

As first approximation,
the pressure around control
volume is the same. Thus,
pressure drops from the cal-
culation. The one dimen-
sional momentum equation is
reduced

F = ρ
(
U2

2 − U1
2
)

(6.19)

Combining the control
volume between points 1 and
3 with (note that there are no
external forces) with points 4
and 2 results in

ρ
(
U2

2 − U1
2
)

= P4 − P3 (6.20)

This analysis provide way to calculate the work needed to move this propeller. Note
that in this analysis it was assumed that the flow is horizontal that z1 = z2 and/or the
change is insignificant.

Jet Propulsion

Jet propulsion is a mechanism in which the air planes and other devices are
propelled. Essentially, the air is sucked into engine and with addition heating (burning
fuel) the velocity is increased. Further increase of the exit area with the increased of
the burned gases further increase the thrust. The analysis of such device in complicated
and there is a whole class dedicated for such topic in many universities. Here, a very
limited discussion related to the steady state is offered.

The difference between the jets propulsion and propellers is based on the energy
supplied. The propellers are moved by a mechanical work which is converted to thrust.
In Jet propulsion, the thermal energy is converted to thrust. Hence, this direct conver-
sion can be, and is, in many case more efficient. Furthermore, as it will be shown in
the Chapter on compressible flow it allows to achieve velocity above speed of sound, a
major obstacle in the past.

The inlet area and exit area are different for most jets and if the mass of the fuel
is neglected then

F = ρ
(
A2 U2

2 −A1 U1
2
)

(6.21)

An academic example to demonstrate how a steady state calculations are done
for a moving control volume. Notice that

Example 6.4:
A sled toy shown in Figure 6.5 is pushed by liquid jet. Calculate the friction force on the
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toy when the toy is at steady state with velocity, U0. Assume that the jet is horizontal
and the reflecting jet is vertical. The

control
volume

x

y

Uj
U0

1

2

Ff

Fig. -6.5. Toy Sled pushed by the liquid
jet in a steady state for example 6.4.

velocity of the jet is uniform. Neglect
the friction between the liquid (jet) and
the toy and between the air and toy.
Calculate the absolute velocity of the
jet exit. Assume that the friction be-
tween the toy and surface (ground) is
relative to the vertical force. The dy-
namics friction is µd.

Solution

The chosen control volume is attached to the toy and thus steady state is obtained. The
frame of reference is moving with the toy velocity, UUU0. The applicable mass conservation
equation for steady state is

A1U1 = A2U2

The momentum equation in the x direction is

FFF f +
∫

c.v.

ggg ρ dV −
∫

c.v.

PPP dA +
∫

c.v.

τ dA =
∫

c.v.

ρUUUUUUrndV (6.IV.a)

The relative velocity into the control volume is

UUU1j = (Uj − U0) x̂

The relative velocity out the control volume is

UUU2j = (Uj − U0) ŷ

The absolute exit velocity is

UUU2 = U0x̂ + (Uj − U0) ŷ

For small volume, the gravity can be neglected also because this term is small
compared to other terms, thus ∫

c.v.

ggg ρ dV ∼ 0

The same can be said for air friction as
∫

c.v.

τ dA ∼ 0

The pressure is uniform around the control volume and thus the integral is

∫

c.v.

PPP dA = 0
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The control volume was chosen so that the pressure calculation is minimized.

The momentum flux is

∫

Sc.v.

ρUx Uirn dA = Aρ U1j
2

(6.IV.b)

The substituting (6.IV.b) into equation (6.IV.a) yields

Ff = AρU1j
2 (6.IV.c)

The friction can be obtained from the momentum equation in the y direction

mtoy g + AρU1j
2 = Fearth

According to the statement of question the friction force is

Ff = µd

(
mtoy g + AρU1j

2
)

The momentum in the x direction becomes

µd

(
mtoy g + Aρ U1j

2
)

= Aρ U1j
2 = Aρ (Uj − U0)

2

The toy velocity is then

U0 = Uj −
√

µd mtoy g

Aρ (1− µd)

Increase of the friction reduce the velocity. Additionally larger toy mass decrease the
velocity.

End Solution

6.2.1 Momentum for Unsteady State and Uniform Flow

mf

mR

Ug

FR

UR

Fig. -6.6. A rocket with a moving control volume.

The main problem in solving the un-
steady state situation is that the con-
trol volume is accelerating. A possible
way to solve the problem is by express-
ing the terms in an equation (6.10).
This method is cumbersome in many
cases. Alternative method of solution
is done by attaching the frame of ref-
erence to the accelerating body. One
such example of such idea is associ-
ated with the Rocket Mechanics which
is present here.



186 CHAPTER 6. MOMENTUM CONSERVATION

6.2.2 Momentum Application to Unsteady State

Rocket Mechanics

A rocket is a devise similar to jet propulsion. The difference is the fact that the oxidant
is on board with the fuel. The two components are burned and the gases are ejected
through a nozzle. This mechanism is useful for specific locations because it is indepen-
dent of the medium though which it travels. In contrast to other mechanisms such as
jet propulsion which obtain the oxygen from the medium which they travel the rockets
carry the oxygen with it. The rocket is accelerating and thus the frame for reference is
moving the with the rocket. The velocity of the rocket in the rocket frame of reference
is zero. However, the derivative with respect to time, dUUU/dt 6= 0 is not zero. The
resistance of the medium is Denote as FR. The momentum equation is

FR︷ ︸︸ ︷∫

c.v.

τdA+
∫

c.v.

ggg ρ dV +

0︷ ︸︸ ︷∫

c.v.

PPPdA−
∫

ρ a0 dV =

d

dt

∫

Vc.v.

ρUydV +
∫

c.v.

ρUy UrndA (6.22)

There are no external forces in this control volume thus, the first term FR, vanishes.
The pressure term vanish because the pressure essentially is the same and the difference
can be neglected. The gravity term is an instantaneous mass times the gravity times
the constant and the same can be said for the acceleration term. Yet, the acceleration
is the derivative of the velocity and thus

∫
ρ a0 dV =

dU

dt
(mR + mf ) (6.23)

The first term on the right hand side is the change of the momentum in the rocket
volume. This change is due to the change in the volume of the oxidant and the fuel.

d

dt

∫

Vc.v.

ρUydV =
d

dt
[(mR + mf ) U ] (6.24)

Clearly, the change of the rocket mass can be considered minimal or even neglected.
The oxidant and fuel flow outside. However, inside the rocket the change in the velocity
is due to change in the reduction of the volume of the oxidant and fuel. This change is
minimal and for this analysis, it can be neglected. The last term is

∫

c.v.

ρUy UrndA = ṁ (Ug − UR) (6.25)

Combining all the above term results in

−FR − (mR + mf ) g +
dU

dt
(mR + mf ) = ṁ (Ug − UR) (6.26)
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Denoting MT = mR +mf and thus dM/dt = ṁ and Ue = Ug−UR. As first approx-
imation, for constant fuel consumption (and almost oxidant), gas flow out is constant
as well. Thus, for constant constant gas consumption equation (6.26) transformed to

−FR −MT g +
dU

dt
MT = ṀT Ue (6.27)

Separating the variables equation (6.27) yields

dU =

(
−ṀT Ue

MT
− FR

MT
− g

)
dt (6.28)

Before integrating equation (6.28), it can be noticed that the friction resistance FR,
is a function of the several parameters such the duration, the speed (the Reynolds
number), material that surface made and the medium it flow in altitude. For simplicity
here the part close to Earth (to the atmosphere) is assumed to be small compared to
the distance in space. Thus it is assume that FR = 0. Integrating equation (6.28) with
limits of U(t = 0) = 0 provides

∫ U

0

dU = −ṀT Ue

∫ t

0

dt

MT
−

∫ t

0

g dt (6.29)

the results of the integration is (notice M = M0 − tṀ)

U = Ue ln
( M0

M0 − tṀ

)
− g t (6.30)

The following is an elaborated example which deals with an unsteady two dimen-
sional problem. This problem demonstrates the used of control volume to find method
of approximation for not given velocity profiles1

Example 6.5:

1A variation of this problem has appeared in many books in the literature. However, in the past
it was not noticed that a slight change in configuration leads to a constant x velocity. This problem
was aroused in manufacturing industry. This author was called for consultation and to solve a related
problem. For which he noticed this “constant velocity.”
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h

Uo

FR

UT

x

y

Fig. -6.7. Schematic of a tank seat-
ing on wheel for unsteady state dis-
cussion

A tank with wheels is filled with liquid is
depicted in Figure 6.7. The tank upper part
is opened to the atmosphere. At initial time
the valve on the tank is opened and the
liquid flows out with an uniform velocity
profile. The tank mass with the wheels (the
solid parts) is known, mt. Calculate the
tank velocity for two cases. One the wheels
have a constant resistance with the ground
and two the resistance linear function of the weight. Assume that the exit velocity is a
linear function of the height.

Solution

This problem is similar to the rocket mechanics with a twist, the source of the propulsion
is the potential energy. Furthermore, the fluid has two velocity components verse one
component in the rocket mechanics. The control volume is shown in Figure 6.7. The
frame of reference is moving with the tank. This situation is unsteady state thus
equation (6.12) for two dimensions is used. The mass conservation equation is

d

dt

∫

Vc.v.

ρ dV +
∫

Sc.v.

ρdA = 0 (6.V.a)

Equation (6.V.a) can be transferred to

dmc.v.

dt
= −ρU0 A0 = −m0 (6.V.b)

Where m0 is mass flow rate out. Equation (6.V.b) can be further reduced due to
constant density to

d (Ah)
dt

+ U0 A0 = 0 (6.V.c)

It can be noticed that the area of the tank is almost constant (A = constant) thus

A
dh

dt
+ U0 A0 = 0 =⇒ dh

dt
= −U0 A0

A
(6.31)

The relationship between the height and the flow now can be used.

U0 = B h (6.V.d)

Where B is the coefficient that has the right units to mach equation (6.V.d) that
represent the resistance in the system and substitute the energy equation. Substituting
equation (6.V.d) into equation (6.V.c) results in

dh

dt
+
B hA0

A
= 0 (6.V.e)
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Equation (6.V.e) is a first order differential equation which can be solved with the
initial condition h(t = 0) = h0. The solution (see for details in the Appendix A.2.1 ) is

h(t) = h0 e
−

tA0 B
A

(6.V.f)

h

Uo

FR

UT

x

y

L

x

Fig. -6.8. A new control volume to find the
velocity in discharge tank for example 6.5.

To find the average velocity in the
x direction a new control volume is used.
The boundary of this control volume are
the tank boundary on the left with the
straight surface as depicted in Figure 6.8.
The last boundary is variable surface in a
distance x from the tank left part. The
tank depth, is not relevant. The mass con-
servation for this control volume is

½w x
dh

dt
= −½w h Ux (6.V.g)

Where here w is the depth or width of the tank. Substituting (6.V.f) into (6.V.g)
results

Ux(x) =
xA0¡¡h0B

A ¢h
©©©©©

e
−

t A0 B
A =

xA0B
A

(6.V.h)

The average x component of the velocity is a linear function of x. Perhaps surprising,
it also can be noticed that Ux(x) is a not function of the time. Using this function, the
average velocity in the tank is

Ux =
1
L

∫ L

0

xA0 B
A

=
L A0 B

2 A
(6.V.i)

It can be noticed that Ux is not function of height, h. In fact, it can be shown that
average velocity is a function of cross section (what direction?).

Using a similar control volume2, the average velocity in the y direction is

Uy =
dh

dt
= −h0 A0 B

A
e
−

tA0 B
A (6.V.j)

It can be noticed that the velocity in the y is a function of time as oppose to the x
direction.

The applicable momentum equation (in the tank frame of reference) is (6.11)
which is reduced to

−FFFR − (mt + mf )ggg −
acceleration︷ ︸︸ ︷

aaa (mt + mf ) =
d

dt
[(mt + mf ) UUUr] + U0 mo

(6.V.k)

2The boundaries are the upper (free surface) and tank side with a y distance from the free surface.R
UbndA =

R
UrndA =⇒ Ubn = Urn.
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Where UUUr is the relative fluid velocity to the tank (if there was no tank movement).
mf and mt are the mass of the fluid and the mass of tank respectively. The acceleration

of the tank is aaa = −îa0 or î · aaa = −a. And the additional force for accelerated system
is

−î ·
∫

Vc.v.

aaaρdV = mc.v. a

The mass in the control volume include the mass of the liquid with mass of the solid
part (including the wheels).

mc.v. = mf + mT

because the density of the air is very small the change of the air mass is very small as
well (ρa << ρ).

The pressure around the control volume is uniform thus
∫

Sc.v.

P cos θxdA ∼ 0

and the resistance due to air is negligible, hence
∫

Sc.v.

τdA ∼ 0

The momentum flow rate out of the tank is
∫

Sc.v.

ρUx UrndA = ρUo
2Ao = mo Uo (6.32)

In the x coordinate the momentum equation is

−Fx + (mt + mf ) a =
d

dt
[(mt + mf ) Ux] + U0 ṁf (6.V.l)

Where Fx is the x component of the reaction which is opposite to the movement
direction. The momentum equation in the y coordinate it is

Fy − (mt + mf ) g =
d

dt

[
(mt + mf ) Uy

]
(6.V.m)

There is no mass flow in the y direction and Uy is component of the velocity in the y
direction.

The tank movement cause movement of the air which cause momentum change.
This momentum is function of the tank volume times the air density times tank velocity
(h0 × A × ρa × U). This effect is known as the add mass/momentum and will be
discussed in the Dimensional Analysis and Ideal Flow Chapters. Here this effect is
neglected.

The main problem of integral analysis approach is that it does not provide a way
to analysis the time derivative since the velocity profile is not given inside the control
volume. This limitation can be partially overcome by assuming some kind of average. It
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can be noticed that the velocity in the tank has two components. The first component
is downward (y) direction and the second in the exit direction (x). The velocity in the y
direction does not contribute to the momentum in the x direction. The average velocity
in the tank (because constant density and more about it later section) is

Ux =
1
Vt

∫

Vf

UxdV

Because the integral is replaced by the average it is transferred to
∫

Vf

ρUxdV ∼ mc.v. Ux

Thus, if the difference between the actual and averaged momentum is neglected
then

d

dt

∫

Vf

ρUx dV ∼ d

dt

(
mc.v. Ux

)
=

d mc.v.

dt
Ux +

∼0︷ ︸︸ ︷
d Ux

dt
mc.v.

(6.V.n)

Noticing that the derivative with time of control volume mass is the flow out in equation
(6.V.n) becomes

dmc.v.

dt
Ux +

dUx

dt
mc.v. = −

mass
rate
out︷︸︸︷

ṁ0 Ux = −m0
LA0 B

2 A

(6.V.o)

Combining all the terms results in

−Fx + a (mf + mt) = −m0
LA0 B

2 A
− U0 m0 (6.V.p)

Rearranging and noticing that a = dUT /dt transformed equation (6.V.p) into

a =
Fx

mf + mt
−m0

(
LA0 B + 2 A U0 (mf + mt)

2 A (mf + mt)

)
(6.V.q)

If the Fx ≥ m0

(
L A0 B

2 A + U0

)
the toy will not move. However, if it is the opposite the

toy start to move. From equation (6.V.d) the mass flow out is

m0(t) =

U0︷ ︸︸ ︷

B

h︷ ︸︸ ︷

h0 e
−

t A0 B
A A0 ρ

(6.V.r)

The mass in the control volume is

mf = ρ

V︷ ︸︸ ︷

Ah0 e
−

tA0 B
A

(6.V.s)



192 CHAPTER 6. MOMENTUM CONSERVATION

The initial condition is that UT (t = 0) = 0. Substituting equations (6.V.r) and (6.V.s)
into equation (6.V.q) transforms it to a differential equation which is integrated if Rx

is constant.
For the second case where Rx is a function of the Ry as

Rx = µ Ry (6.33)

The y component of the average velocity is function of the time. The change in the
accumulative momentum is

d

dt

[
(mf ) Uy

]
=

dmf

dt
Uy +

dUy

dt
mf (6.V.t)

The reason that mf is used because the solid parts do not have velocity in the y
direction. Rearranging the momentum equation in the y direction transformed

Fy =




mt +

mf︷ ︸︸ ︷

ρA h0e
−

tA0 B
A




g + 2
(

ρ h0A0
2 B2

A

)2

e
−

tA0 B
A (6.V.u)

The actual results of the integrations are not provided since the main purpose of this
exercise to to learn how to use the integral analysis.

End Solution

Averaged Velocity! Estimates

In example 6.1 relationship between momentum of maximum velocity to average
velocity was presented. Here, relationship between momentum for the average velocity
to the actual velocity is presented. There are situations where actual velocity profile
is not known but is function can be approximated. For example, the velocity profile
can be estimated using the ideal fluid theory but the actual values are not known. For
example, the flow profile in example 6.5 can be estimated even by hand sketching.

For these cases a correction factor can be used. This correction factor can be
calculated by finding the relation between the two cases. The momentum for average
velocity is

Ma = mc.vU = ρ V

∫

c.v

UdV (6.34)

The actual momentum for control volume is

Mc =
∫

c.v.

ρ UxdV (6.35)

These two have to equal thus,

C ρ V

∫

c.v

UdV =
∫

c.v.

ρ UxdV (6.36)

If the density is constant then the coefficient is one (C ≡ 1). However, if the density
is not constant, the coefficient is not equal to one.
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6.3 Conservation Moment Of Momentum
The angular momentum can be derived in the same manner as the momentum equation
for control volume. The force

F =
D

Dt

∫

Vsys

ρUUUdV (6.37)

The angular momentum then will be obtained by calculating the change of every
element in the system as

M = rrr ×FFF =
D

Dt

∫

Vsys

ρrrr ×UUU dV (6.38)

Now the left hand side has to be transformed into the control volume as

M =
d

dt

∫

Vc.v.

ρ (rrr ×UUU) dV +
∫

Sc.v

ρ (rrr ×UUU)UUUrn dA (6.39)

The angular momentum equation, applying equation (6.39) to uniform and steady state
flow with neglected pressure gradient is reduced to

M = ṁ (r2 × U2 + r2 × U1) (6.40)

Introduction to Turbo Machinery

Um2

Ulr2

Un2

Ut2

U2

Fig. -6.9. The impeller of the centrifugal pump
and the velocities diagram at the exit.

The analysis of many turbomachinary
such as centrifugal pump is fundamen-
tally based on the angular momentum. To
demonstrate this idea, the following dis-
cussion is provided. A pump impeller is
shown in Figure 6.9 commonly used in in-
dustry. The impeller increases the velocity
of the fluid by increasing the radius of the
particles. The inside particle is obtained
larger velocity and due to centrifugal forces
is moving to outer radius for which ad-
ditionally increase of velocity occur. The
pressure on the outer side is uniform thus does not create a moment. The flow is
assumed to enter the impeller radially with average velocity U1. Here it is assumed
that fluid is incompressible (ρ = constant). The height of the impeller is h. The
exit liquid velocity, U2 has two components, one the tangential velocity, Ut2 and radial
component, Un2. The relative exit velocity is Ulr2 and the velocity of the impeller edge
is Um2. Notice that tangential liquid velocity, Ut2 is not equal to the impeller outer
edge velocity Um2. It is assumed that required torque is function U2, r, and h.

M = ṁ r2 Ut2 (6.41)
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Multiplying equation (6.41) results in

Mω = ṁ

Um2︷︸︸︷
r2 ω Ut2 (6.42)

The shaft work is given by the left side and hence,

Ẇ = ṁUm2 Ut2 (6.43)

The difference between Um2 to Ut2 is related to the efficiency of the pump which will
be discussed in the chapter on the turbomachinary.

Example 6.6:
A centrifugal pump is pumping 600 2[m3/hour]. The thickness of the impeller, h is
2[cm] and the exit diameter is 0.40[m]. The angular velocity is 1200 r.p.m. Assume
that angle velocity is leaving the impeller is 125◦. Estimate what is the minimum energy
required by the pump.

6.4 More Examples on Momentum Conservation
Example 6.7:
A design of a rocket is based on the idea that density increase of the leaving jet increases
the acceleration of the rocket see Figure

Urocket

Uexit

hℓ

Gas

Liquid

hg

 hypotherical 
volume
height 

Fig. -6.10. Nozzle schematics wa-
ter rocket for the discussion on the
forces for example 6.7

6.10. Assume that this idea has a good en-
gineering logic. Liquid fills the lower part
of the rocket tank. The upper part of the
rocket tank is filled with compressed gas.
Select the control volume in such a way
that provides the ability to find the rocket
acceleration. What is the instantaneous ve-
locity of the rocket at time zero? Develop
the expression for the pressure (assuming
no friction with the walls). Develop ex-
pression for rocket velocity. Assume that
the gas is obeying the perfect gas model.
What are the parameters that effect the
problem.

Solution

Under construction for time being only hints3

In the solution of this problem several assumptions must be made so that the integral

system can be employed.

3This problem appeared in the previous version (0.2.3) without a solution. Several people ask to
provide a solution or some hints for the solution. The following is not the solution but rather the
approach how to treat this problem.
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� The surface remained straight at the times and no liquid residue remains behind.

� The gas obeys the ideal gas law.

� The process is isothermal (can be isentropic process).

� No gas leaves the rocket.

� The mixing between the liquid and gas is negligible.

� The gas mass is negligible in comparison to the liquid mass and/or the rocket.

� No resistance to the rocket (can be added).

� The cross section of the liquid is constant.

In this problem the energy source is the pressure of the gas which propels the
rocket. Once the gas pressure reduced to be equal or below the outside pressure the
rocket have no power for propulsion. Additionally, the initial take off is requires a larger
pressure.

The mass conservation is similar to the rocket hence it is

dm

dt
= −Ue Ae (6.VII.a)

The mass conservation on the gas zone is a byproduct of the mass conservation of the
liquid. Furthermore, it can be observed that the gas pressure is a direct function of the
mass flow out.

The gas pressure at the initial point is

P0 = ρ0 R T (6.VII.b)

Per the assumption the gas mass remain constant and is denoted as mg. Using the
above definition, equation (6.VII.b) becomes

P0 =
mg R T

V0g
(6.VII.c)

The relationship between the gas volume

Vg = hg A (6.VII.d)

The gas geometry is replaced by a virtual constant cross section which cross section
of the liquid (probably the same as the base of the gas phase). The change of the gas
volume is

dVg

dt
= A

dhg

dt
= −A

dh`

dt
(6.VII.e)

The last identify in the above equation is based on the idea what ever height concede
by the liquid is taken by the gas. The minus sign is to account for change of “direction”
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of the liquid height. The total change of the gas volume can be obtained by integration
as

Vg = A (hg0 −∆h`) (6.VII.f)

It must be point out that integral is not function of time since the height as function
of time is known at this stage.

The initial pressure now can be expressed as

P0 =
mg R T

hg0 A
(6.VII.g)

The pressure at any time is

P =
mg R T

hg A
(6.VII.h)

Thus the pressure ratio is

P

P0
=

hg0

hg
=

hg0

hg0 −∆h`
= hg0

1

1− ∆h`

hg0

(6.VII.i)

Equation (6.VII.a) can be written as

m`(t) = m`0 −
∫ t

0

Ue Aedt (6.VII.j)

From equation (6.VII.a) it also can be written that

dh`

dt
=

Ue Ae

ρe A
(6.VII.k)

According to the assumption the flow out is linear function of the pressure inside thus,

Ue = f(P ) + g h` rho w f(P ) = ζ P (6.VII.l)

Where ζ here is a constant which the right units.
The liquid momentum balance is

−g (mR + m`)− a (mR + m`) =

=0︷ ︸︸ ︷
d

dt
(mR + m`) U +bc + (UR + U`)m`

(6.VII.m)

Where bc is the change of the liquid mass due the boundary movement.
End Solution

Example 6.8:
A rocket is filled with only compressed gas. At a specific moment the valve is opened
and the rocket is allowed to fly. What is the minimum pressure which make the rocket
fly. What are the parameters that effect the rocket velocity. Develop an expression for
the rocket velocity.
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Example 6.9:
In Example 6.5 it was mentioned that there are only two velocity components. What
was the assumption that the third velocity component was neglected.

6.4.1 Qualitative Questions

Example 6.10:
For each following figures discuss and state force direction and the momentum that act
on the control volume due to .

Situations Explanations

F
Uout

Uin

U

Flow in and out of Angle

θ

β

Flow in and out at angle from a tank

Example 6.11:
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Fig. -6.11. Flow out of un symmetri-
cal tank for example 6.11

A similar tank as shown in Figure 6.11 is
built with a exit located in uneven distance
from the the right and the left and is filled
with liquid. The exit is located on the left
hand side at the front. What are the direc-
tion of the forces that keep the control vol-
ume in the same location? Hints, consider
the unsteady effects. Look at the direc-
tions which the unsteady state momentum
in the tank change its value.

Example 6.12:
A large tank has opening with area, A. In front and against the opening there a block
with mass of 50[kg]. The friction factor between the block and surface is 0.5. Assume
that resistence between the air and the water jet is negligible. Calculated the minimum
height of the liquid in the tank in order to start to have the block moving?

Solution

The solution of this kind problem first requires to know at what accuracy this solution
is needed. For great accuracy, the effect minor loss or the loss in the tank opening have
taken into account. First assuming that a minimum accuracy therefore the infomration
was given on the tank that it large. First, the velocity to move the block can be obtained
from the analysis of the block free body diagram (the impeging jet diagram).

τw

ρUexit
2

ρUout
2

mg

Fig. -6.12. Jet impinging jet surface perpendi-
cular and with the surface.

The control volume is attached to
the block. It is assumed that the two
streams in the vertical cancle each other.
The jet stream has only one componet in
the horizontal component. Hence,

F = ρA Uexit
2 (6.XII.a)

The miminum force the push the plock is

ρA Uexit
2 = mg µ =⇒ Uexit =

√
mg µ

ρA
(6.XII.b)

And the velocity as a function of the height is U =
√

ρ g h and thus

h =
mµ

ρ2 A
(6.XII.c)

It is interesting to point out that the gravity is relavent. That is the gravity has no
effect on the velocity (height) required to move the block. However, if the gravity was
in the opposite direction, no matter what the height will be the block will not move
(neglecting other minor effects). So, the gravity has effect and the effect is the direction,
that is the same height will be required on the moon as the earth.



6.4. MORE EXAMPLES ON MOMENTUM CONSERVATION 199

For very tall blocks, the forces that acts on the block in the vertical direction is
can be obtained from the analysis of the control volume shown in Figure 6.12. The jet
impenged on the surface results in out flow stream going to all the directions in the
block surface. Yet, the gravity acts on all these “streams” and eventually the liquid
flows downwards. In fact because the gravity the jet impeging in downwards slend
direction. At the exreme case, all liquid flows downwords. The balance on the stream
downwords (for steady state) is

ρ Uout
2 ∼= ρ Vliquid g + mg (6.XII.d)

Where Vliquid is the liquid volume in the control volume (attached to the block). The
pressure is canceled because the flow is exposed to air. In cases were ρ Vliquid g >

ρ Uout
2

the required height is larger. In the oposite cases the height is smaller.
End Solution
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CHAPTER 7

Energy Conservation

7.1 The First Law of Thermodynamics
This chapter focuses on the energy conservation which is the first law of thermodynam-
ics1. The fluid, as all phases and materials, obeys this law which creates strange and
wonderful phenomena such as a shock and choked flow. Moreover, this law allows to
solve problems, which were assumed in the previous chapters. For example, the rela-
tionship between height and flow rate was assumed previously, here it will be derived.
Additionally a discussion on various energy approximation is presented.

It was shown in Chapter 2 that the energy rate equation (2.10) for a system is

Q̇− Ẇ =
D EU

Dt
+

D
(
mU2

)

Dt
+

D (mg z)
Dt

(7.1)

This equation can be rearranged to be

Q̇− Ẇ =
D

Dt

(
EU + m

U2

2
+ mg z

)
(7.2)

Equation (7.2) is similar to equation (6.3) in which the right hand side has to be
interpreted and the left hand side interpolated using the Reynold’s Transport Theorem
(RTT)2. The right hand side is very complicated and only some of the effects will be
discussed (It is only an introductory material).

1Thermodynamics is the favorite topic of this author since it was his major in high school. Clearly this
topic is very important and will be extensively discussed here. However, during time of the constructing
this book only a simple skeleton by Potto standards will be build.

2Some view the right hand side as external effects while the left side of the equation represents the
internal effects. This simplistic representation is correct only under extreme conditions. For example,
the above view is wrong when the heat convection, which is external force, is included on the right
hand side.

201
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The energy transfer is carried (mostly3) by heat transfer to the system or the
control volume. There are three modes of heat transfer, conduction, convection4 and
radiation. In most problems, the radiation is minimal. Hence, the discussion here
will be restricted to convection and conduction. Issues related to radiation are very
complicated and considered advance material and hence will be left out. The issues
of convection are mostly covered by the terms on the left hand side. The main heat
transfer mode on the left hand side is conduction. Conduction for most simple cases is
governed by Fourier’s Law which is

dq̇ = kT
dT

dn
dA (7.3)

Where dq̇ is heat transfer to an infinitesimal small area per time and kT is the heat
conduction coefficient. The heat derivative is normalized into area direction. The total
heat transfer to the control volume is

Q̇ =
∫

Acv

k
dT

dn
dA (7.4)

System at t

System at t + dt

dℓ

Sn

τ

Fig. -7.1. The work on the control volume is
done by two different mechanisms, Sn and τ .

The work done on the system is
more complicated to express than the heat
transfer. There are two kinds of works that
the system does on the surroundings. The
first kind work is by the friction or the shear
stress and the second by normal force. As
in the previous chapter, the surface forces
are divided into two categories: one per-
pendicular to the surface and one with the
surface direction. The work done by sys-
tem on the surroundings (see Figure 7.1) is

dw =

dFFF︷ ︸︸ ︷
−SSS dAAA ·d` = − (SnSnSn + τ ) ·

dV︷ ︸︸ ︷
d`̀̀dA (7.5)

The change of the work for an infinitesimal time (excluding the shaft work) is

dw

dt
= − (SnSnSn + τ ) ·

U︷︸︸︷
d`̀̀

dt
dA = − (SnSnSn + τ ) ·UUU dA (7.6)

The total work for the system including the shaft work is

Ẇ = −
∫

Ac.v.

(SnSnSn + τ ) UUU dA−Wshaft (7.7)

3There are other methods such as magnetic fields (like microwave) which are not part of this book.
4When dealing with convection, actual mass transfer must occur and thus no convection is possible

to a system by the definition of system.
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The energy equation (7.2) for system is
∫

Asys

kT
dT

dn
dA+

∫

Asys

(SnSnSn + τ ) dV

+Ẇshaft =
D

Dt

∫

Vsys

ρ

(
EU + m

U2

2
+ g z

)
dV

(7.8)

Equation (7.8) does not apply any restrictions on the system. The system can
contain solid parts as well several different kinds of fluids. Now Reynolds Transport
Theorem can be used to transformed the left hand side of equation (7.8) and thus
yields

∫

Acv

kT
dT

dn
dA+

∫

Acv

(SnSnSn + τ ) dA + Ẇshaft =

d

dt

∫

Vcv

ρ

(
Eu + m

U2

2
+ g z

)
dV

+
∫

Acv

(
Eu + m

U2

2
+ g z

)
ρUrndA

Energy Equation

(7.9)

From now on the notation of the control volume and system will be dropped since all
equations deals with the control volume. In the last term in equation (7.9) the velocity
appears twice. Note that U is the velocity in the frame of reference while Urn is the
velocity relative to the boundary. As it was discussed in the previous chapter the normal
stress component is replaced by the pressure (see equation (6.8) for more details). The
work rate (excluding the shaft work) is

Ẇ ∼=

flow work︷ ︸︸ ︷∫

S

Pn̂ ·UUUdA−
∫

S

τ ·UUU n̂ dA (7.10)

The first term on the right hand side is referred to in the literature as the flow
work and is

∫

S

Pn̂ ·UUUdA =
∫

S

P

Urn︷ ︸︸ ︷
(U − Ub) n̂ dA +

∫

S

P UbndA (7.11)

Equation (7.11) can be further manipulated to become

∫

S

Pn̂ ·UUUdA =

work due to
the flow︷ ︸︸ ︷∫

S

P

ρ
ρUrn dA +

work due to
boundaries
movement︷ ︸︸ ︷∫

S

PUbndA (7.12)
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The second term is referred to as the shear work and is defined as

Ẇshear = −
∫

S

τ ·UUUdA (7.13)

Substituting all these terms into the governing equation yields

Q̇− Ẇshear− Ẇshaft =
d

dt

∫

V

(
Eu +

U2

2
+ g z

)
dV +

∫

S

(
Eu +

P

ρ
+

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUrndA
(7.14)

The new term P/ρ combined with the internal energy, Eu is referred to as the enthalpy,
h, which was discussed on page 50. With these definitions equation (7.14) transformed

Q̇− Ẇshear+ Ẇshaft =
d

dt

∫

V

(
Eu +

U2

2
+ g z

)
ρ dV +

∫

S

(
h +

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUbndA

Simplified Energy Equation

(7.15)

Equation (7.15) describes the energy conservation for the control volume in stationary
coordinates. Also note that the shear work inside the the control volume considered as
shaft work.

The example of flow from a tank or container is presented to demonstrate how
to treat some of terms in equation (7.15).

Flow Out From A Container

hℓ

A

Ae

Ue

Fig. -7.2. Discharge from a Large Container
with a small diameter.

In the previous chapters of this book,
the flow rate out of a tank or container
was assumed to be a linear function of
the height. The flow out is related to the
height but in a more complicate function
and is the focus of this discussion. The en-
ergy equation with mass conservation will
be utilized for this analysis. In this anal-
ysis several assumptions are made which
includes the following: constant density,
the gas density is very small compared to
liquid density, and exit area is relatively
small, so the velocity can be assumed uni-
form (not a function of the opening height)5, surface tension effects are negligible and

5Later a discussion about the height opening effects will be discussed.
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the liquid surface is straight6. Additionally, the temperature is assumed to constant.
The control volume is chosen so that all the liquid is included up to exit of the pipe.
The conservation of the mass is

d

dt

∫

V
¢ρ dV +

∫

A
¢ρUrn dA = 0 (7.16)

which also can be written (because dρ
dt = 0) as

∫

A

Ubn dA +
∫

A

UrndA = 0 (7.17)

Equation (7.17) provides the relationship between boundary velocity to the exit velocity
as

AUb = Ae Ue (7.18)

Note that the boundary velocity is not the averaged velocity but the actual velocity.
The averaged velocity in z direction is same as the boundary velocity

Ub = Uz =
dh

dt
=

Ae

A
Ue (7.19)

The x component of the averaged velocity is a function of the geometry and was
calculated in Example 5.12 to be larger than

Ux w
2 r

h

Ae

A
Ue =⇒ Ux

∼= 2 r

h
Ub =

2 r

h

dh

dt
(7.20)

In this analysis, for simplicity, this quantity will be used.
The averaged velocity in the y direction is zero because the flow is symmetrical7.

However, the change of the kinetic energy due to the change in the velocity field isn’t
zero. The kinetic energy of the tank or container is based on the half part as shown in
Figure 7.3. Similar estimate that was done for x direction can be done to every side of
the opening if they are not symmetrical. Since in this case the geometry is assumed to
be symmetrical one side is sufficient as

Uy
∼= (π − 2)r

8 h

dh

dt
(7.21)

6This assumption is appropriated only under certain conditions which include the geometry of the
tank or container and the liquid properties. A discussion about this issue will be presented in the
Dimensional Chapter and is out of the scope of this chapter. Also note that the straight surface
assumption is not the same surface tension effects zero.

Also notice that the surface velocity is not zero. The surface has three velocity components which
non have them vanish. However, in this discussion it is assumed that surface has only one component
in z direction. Hence it requires that velocity profile in x y to be parabolic. Second reason for this
exercise the surface velocity has only one component is to avoid dealing with Bar-Meir’s instability.

7For the mass conservation analysis, the velocity is zero for symmetrical geometry and some other
geometries. However, for the energy analysis the averaged velocity cannot be considered zero.
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Uy1

2

Uy1

2

Ue

Uy = 0

Fig. -7.3. How to compensate and estimate the
kinetic energy when averaged Velocity is zero.

The energy balance can be expressed
by equation (7.15) which is applicable to
this case. The temperature is constant8.
In this light, the following approximation
can be written

Q̇ =
Eu

dt
= hin − hout = 0 (7.22)

The boundary shear work is zero because
the velocity at tank boundary or walls is
zero. Furthermore, the shear stresses at
the exit are normal to the flow direction
hence the shear work is vanished. At the
free surface the velocity has only normal component9 and thus shear work vanishes
there as well. Additionally, the internal shear work is assumed negligible.

Ẇshear = Ẇshaft = 0 (7.23)

Now the energy equation deals with no “external” effects. Note that the (exit) velocity
on the upper surface is zero Urn = 0.

Combining all these information results in

internal energy change︷ ︸︸ ︷
d

dt

∫

V

(
U2

2
+ g z

)
ρ dV +

energy flow out︷ ︸︸ ︷
energy in and out︷ ︸︸ ︷∫

A

(
Pe

ρ
+

Ue
2

2

)
Ue ρ dA−

upper surface work︷ ︸︸ ︷∫

A

Pa Ub dA = 0 (7.24)

Where Ub is the upper boundary velocity, Pa is the external pressure and Pe is the exit
pressure10.

The pressure terms in equation (7.24) are
∫

A

Pe

ρ
Ue ρdA−

∫

A

Pa Ub dA = Pe

∫

A

Ue dA− Pa

∫

A

Ub dA (7.25)

It can be noticed that Pa = Pe hence

Pa

=0︷ ︸︸ ︷(∫

A

Ue dA−
∫

A

Ub dA

)
= 0 (7.26)

8This approach is a common approximation. Yet, why this approach is correct in most cases is not
explained here. Clearly, the dissipation creates a loss that has temperature component. In this case,
this change is a function of Eckert number, Ec which is very small. The dissipation can be neglected
for small Ec number. Ec number is named after this author’s adviser, E.R.G. Eckert. A discussion
about this effect will be presented in the dimensional analysis chapter. Some examples how to calculate
these losses will be resent later on.

9It is only the same assumption discussed earlier.
10It is assumed that the pressure in exit across section is uniform and equal surroundings pressure.
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The governing equation (7.24) is reduced to

d

dt

∫

V

(
U2

2
+ g z

)
ρ dV −

∫

A

(
Ue

2

2

)
Ue ρ dA = 0 (7.27)

The minus sign is because the flow is out of the control volume.
Similarly to the previous chapter which the integral momentum will be replaced

by some kind of average. The terms under the time derivative can be divided into two
terms as

d

dt

∫

V

(
U2

2
+ g z

)
ρdV =

d

dt

∫

V

U2

2
dV +

d

dt

∫

V

g z ρ dV (7.28)

The second integral (in the r.h.s) of equation (7.28) is

d

dt

∫

V

g z ρ dV = g ρ
d

dt

∫

A

∫ h

0

z

dV︷ ︸︸ ︷
dz dA (7.29)

Where h is the height or the distance from the surface to exit. The inside integral can
be evaluated as

∫ h

0

zdz =
h2

2
(7.30)

Substituting the results of equation (7.30) into equation (7.29) yields

g ρ
d

dt

∫

A

h2

2
dA = g ρ

d

dt


h

2

V︷︸︸︷
hA


 = g ρ A h

d h

dt
(7.31)

The kinetic energy related to the averaged velocity with a correction
factor which depends on the geometry and the velocity profile. Further-
more, Even the averaged velocity is zero the kinetic energy is not zero
and another method should be used.

A discussion on the correction factor is presented to provide a better “averaged” velocity.
A comparison between the actual kinetic energy and the kinetic energy due to the
“averaged” velocity (to be called the averaged kinetic energy) provides a correction
coefficient. The first integral can be estimated by examining the velocity profile effects.
The averaged velocity is

Uave =
1
V

∫

V

UdV (7.32)

The total kinetic energy for the averaged velocity is

ρUave
2 V = ρ

(
1
V

∫

V

UdV

)2

V = ρ

(∫

V

UdV

)2

(7.33)
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The general correction factor is the ratio of the above value to the actual kinetic energy
as

CF =

(∫

V

ρU dV

)2

∫

V

ρU2 dV

6= ¢ρ (Uave)
2

V∫

V
¢ρU2 dV

(7.34)

Here, CF is the correction coefficient. Note, the inequality sign because the density
distribution for compressible fluid. The correction factor for a constant density fluid is

CF =

(∫

V

ρU dV

)2

∫

V

ρU2 dV

=

(
¢ρ

∫

V

U dV

)2

¢ρ
∫

V

U2 dV

=
Uave

2 V∫

V

U2 dV

(7.35)

This integral can be evaluated for any given velocity profile. A large family of velocity
profiles is laminar or parabolic (for one directional flow)11. For a pipe geometry, the
velocity is

U
( r

R

)
= U (r̄) = Umax

(
1− r̄2

)
= 2 Uave

(
1− r̄2

)
(7.36)

It can be noticed that the velocity is presented as a function of the reduced radius12.
The relationship between Umax to the averaged velocity, Uave is obtained by using
equation (7.32) which yields 1/2.

Substituting equation (7.36) into equation (7.35) results

Uave
2 V∫

V

U2 dV

=
Uave

2 V∫

V

(
2 Uave

(
1− r̄2

))2
dV

=
Uave

2 V

4 Uave
2 π L R2

3

=
3
4

(7.37)

The correction factor for many other velocity profiles and other geometries can be
smaller or larger than this value. For circular shape, a good guess number is about
1.1. In this case, for simplicity reason, it is assumed that the averaged velocity indeed
represent the energy in the tank or container. Calculations according to this point can
improve the accurately based on the above discussion.

The difference between the “averaged momentum” velocity and the “av-
eraged kinetic” velocity is also due to the fact that energy is added for
different directions while in the momentum case, different directions can-
cel each other out.

11Laminar flow is not necessarily implies that the flow velocity profile is parabolic. The flow is
parabolic only when the flow is driven by pressure or gravity. More about this issue in the Differential
Analysis Chapter.

12The advantage is described in the Dimensional Analysis Chapter.
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The unsteady state term then obtains the form

d

dt

∫

V

ρ

(
U2

2
+ g y

)
dV ∼= ρ

d

dt




[
U

2

2
+

g h

2

] V︷︸︸︷
hA


 (7.38)

The relationship between the boundary velocity to the height (by definition) is

Ub =
dh

dt
(7.39)

Therefore, the velocity in the z direction13 is

Uz =
dh

dt
(7.40)

Ue =
A

Ae

dh

dt
= −Ub

dh

dt
(7.41)

Combining all the three components of the velocity (Pythagorean Theorem) as

U
2 ∼= Ux

2
+ Uy

2
+ Uz

2
(7.42)

U
2 ∼=

(
(π − 2) r

8 h

dh

dt

)2

+
(

(π − 1) r

4 h

dh

dt

)2

+
(

dh

dt

)2

(7.43)

U ∼= dh

dt

f(G)︷ ︸︸ ︷√(
(π − 2) r

8h

)2

+
(

(π − 1) r

4 h

)2

+ 12 (7.44)

It can be noticed that f(G) is a weak function of the height inverse. Analytical solution
of the governing equation is possible including this effect of the height. However, the
mathematical complication are enormous14 and this effect is assumed negligible and the
function to be constant.

13A similar point was provided in mass conservation Chapter 5. However, it easy can be proved by
construction the same control volume. The reader is encouraged to do it to get acquainted with this
concept.

14The solution, not the derivation, is about one page. It must be remembered that is effect extremely
important in the later stages of the emptying of the tank. But in the same vain, some other effects
have to be taken into account which were neglected in construction of this model such as upper surface
shape.
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The last term is

∫

A

Ue
2

2
Ue ρ dA =

Ue
2

2
Ue ρAe =

1
2

(
dh

dt

A

Ae

)2

Ue ρAe (7.45)

Combining all the terms into equation (7.27) results in

¢ρ
d

dt




[
U

2

2
+

g h

2

] V︷︸︸︷
hA


− 1

2

(
dh

dt

)2 (
A

Ae

)2

Ue ¢ρAe = 0 (7.46)

taking the derivative of first term on l.h.s. results in

d

dt

[
U

2

2
+

g h

2

]
hA +

[
U

2

2
+

g h

2

]
A

dh

dt
− 1

2

(
dh

dt

)2 (
A

Ae

)2

Ue Ae = 0 (7.47)

Equation (7.47) can be rearranged and simplified and combined with mass con-
servation 15.

Advance material can be skipped

Dividing equation (7.46) by Ue Ae and utilizing equation (7.40)

d

dt

[
U

2

2
+

g h

2

]
hA

Ue Ae
+

[
U

2

2
+

g h

2

] A Ae
A Ue︷ ︸︸ ︷

¡
¡¡A
dh

dt
−1

2

(
dh

dt

)2 (
A

Ae

)2

»»»Ue Ae = 0

(7.48)

Notice that U = Ub f(G) and thus

f(G) Ub︷︸︸︷
U

dU

dt

h A

Ue Ae
+

g

2
dh

dt

hA

Ue Ae
+

[
U

2

2
+

g h

2

]
− 1

2

(
dh

dt

)2 (
A

Ae

)2

= 0 (7.49)

Further rearranging to eliminate the “flow rate” transforms to

f(G) h
dU

dt ©©©©©*1(
Ub A

Ue Ae

)
+

g h

2 ¶
¶

¶
¶7

1
dh

dt
A

Ue Ae
+

[
f(G)2

2

(
dh

dt

)2

+
g h

2

]
− 1

2

(
dh

dt

)2 (
A

Ae

)2

= 0

(7.50)

f(G)2 h
d2h

dt2
+

g h

2
+

[
f(G)2

2

(
dh

dt

)2

+
g h

2

]
− 1

2

(
dh

dt

)2 (
A

Ae

)2

= 0 (7.51)

15This part can be skipped to end of ”advanced material”.
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End Advance material

Combining the gh terms into one yields

f(G)2 h
d2h

dt2
+ g h +

1
2

(
dh

dt

)2
[
f(G)2 −

(
A

Ae

)2
]

= 0 (7.52)

Defining a new tank emptying parameter, Te, as

Te =
(

A

f(G)Ae

)2

(7.53)

This parameter represents the characteristics of the tank which controls the emptying
process. Dividing equation (7.52) by f(G)2 and using this parameter, equation (7.52)
after minor rearrangement transformed to

h

(
d2h

dt2
+

g Ae
2

Te A2

)
+

1
2

(
dh

dt

)2

[1− Te] = 0 (7.54)

The solution can either of these equations16

−

-
-

dh√
(k1 Te − 2 k1) eln(h) Te + 2 g h2

h (Te− 2) f(G)
= t + k2 (7.55)

or

-
-

dh√
(k1 Te − 2 k1) eln(h) Te + 2 g h2

h (Te− 2) f(G)
= t + k2 (7.56)

The solution with the positive solution has no physical meaning because the height
cannot increase with time. Thus define function of the height as

f(h) = −

-
-

dh√
(k1 Te − 2 k1) eln(h) Te + 2 g h2

h (Te− 2) f(G)
(7.57)

The initial condition for this case are: one the height initial is

h(0) = h0 (7.58)

16A discussion about this equation appear in the mathematical appendix.
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The initial boundary velocity is

dh

dt
= 0 (7.59)

This condition pose a physical limitation17 which will be ignored. The first condition
yields

k2 = −f(h0) (7.60)

The second condition provides

dh

dt
= 0 =

√
(k1 Te − 2 k1) eln(h0) Te + 2 g h0

2

h0 (Te− 2) f(G)
(7.61)

The complication of the above solution suggest a simplification in which

d2h

dt2
<<

g Ae
2

Te A2
(7.62)

which reduces equation (7.54) into

h

(
g Ae

2

Te A2

)
+

1
2

(
dh

dt

)2

[1− Te] = 0 (7.63)

While equation (7.63) is still non linear equation, the non linear element can be removed
by taking negative branch (height reduction) of the equation as

(
dh

dt

)2

=
2 g h

−1 +
(

A
Ae

)2 (7.64)

It can be noticed that Te “disappeared” from the equation. And taking the “positive”
branch

dh

dt
=

√
2 g h√

1−
(

A
Ae

)2
(7.65)

The nature of first order Ordinary Differential Equation that they allow only one initial
condition. This initial condition is the initial height of the liquid. The initial velocity
field was eliminated by the approximation (remove the acceleration term). Thus it is
assumed that the initial velocity is not relevant at the core of the process at hand. It is

17For the initial condition speed of sound has to be taken into account. Thus for a very short time,
the information about opening of the valve did not reached to the surface. This information travel
in characteristic sound speed which is over 1000 m/sec. However, if this phenomenon is ignored this
solution is correct.
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correct only for large ratio of h/r and the error became very substantial for small value
of h/r.

Equation (7.65) integrated to yield

(
1−

(
A

Ae

)2
)∫ h

h0

dh√
2 g h

=
∫ t

0

dt (7.66)

The initial condition has been inserted into the integral which its solution is

(
1−

(
A

Ae

)2
)

h− h0√
2 g h

= t (7.67)

Ue =
dh

dt

A

Ae
=

√
2 g h√

1−
(

A
Ae

)2

A

Ae
=

√
2 g h√

1− (
Ae

A

)2
(7.68)

If the area ratio Ae/A << 1 then

U ∼=
√

2 g h (7.69)

Equation (7.69) is referred in the literature as Torricelli’s equation18

This analysis has several drawbacks which limits the accuracy of the calculations.
Yet, this analysis demonstrates the usefulness of the integral analysis to provide a
reasonable solution. This analysis can be improved by experimental investigating the
phenomenon. The experimental coefficient can be added to account for the dissipation
and other effects such

dh

dt
∼= C

√
2 g h (7.70)

The loss coefficient can be expressed as

C = Kf

(
U2

2

)
(7.71)

A few loss coefficients for different configuration is given following Figure 7.4.

18Evangelista Torricelli (October 15, 1608 October 25, 1647) was an Italian physicist and mathe-
matician. He derived this equation based on similar principle to Bernoulli equation (which later leads to
Bernoulli’s equation). Today the exact reference to his work is lost and only “sketches” of his lecture
elude work. He was student (not formal) and follower of Galileo Galilei. It seems that Torricelli was an
honest man who gave to others and he died at young age of 39 while in his prime.
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(a) Projecting
pipe K=1.

(b) Sharp edge
pipe connection
K=0.5.

(c) Rounded in-
let pipe K=0.04.

Fig. -7.4. Typical resistance for selected outlet configuration.

7.2 Limitation of Integral Approach

Some of accuracy issues to enhance the quality and improvements of the integral method
were suggested in the analysis of the emptying tank. There are problems that the integral
methods even with these enhancements simply cannot tackle.

The improvements to the integral methods are the corrections to the estimates
of the energy or other quantities in the conservation equations. In the calculations
of the exit velocity of a tank, two such corrections were presented. The first type
is the prediction of the velocities profile (or the concentration profile). The second
type of corrections is the understanding that averaged of the total field is different
from the averaged of different zooms. In the case of the tank, the averaged velocity
in x direction is zero yet the averaged velocity in the two zooms (two halves) is not
zero. In fact, the averaged energy in the x direction contributes or effects the energy
equation. The accuracy issues that integral methods intrinsically suffers from no ability
to exact flow field and thus lost the accuracy as was discussed in the example. The
integral method does not handle the problems such as the free surface with reasonable
accuracy. Furthermore, the knowledge of whether the flow is laminar or turbulent (later
on this issue) has to come from different techniques. Hence the prediction can skew
the actual predictions.

equilibrioum
level

H

H

D

air
air

lowest level
for the liquid

Fig. -7.5. Flow in an oscillating manometer.

In the analysis of the tank it was
assumed that the dissipation can be ig-
nored. In cases that dissipation play major
role, the integral does not provide a suf-
ficient tool to analyze the issue at hand.
For example, the analysis of the oscillating
manometer cannot be carried by the inte-
gral methods. A liquid in manometer is
disturbed from a rest by a distance of H0.
The description H(t) as a function of time
requires exact knowledge of the velocity
field. Additionally, the integral methods is
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too crude to handle issues of free interface.
These problem were minor for the empty-
ing the tank but for the oscillating manometer it is the core of the problem. Hence
different techniques are required.

The discussion on the limitations was not provided to discard usage of this method
but rather to provide a guidance of use with caution. The integral method is a powerful
and yet simple method but has has to be used with the limitations of the method in
mind.

7.3 Approximation of Energy Equation
The emptying the tank problem was complicated even with all the simplifications that
were carried. Engineers in order to reduce the work further simplify the energy equation.
It turn out that these simplifications can provide reasonable results and key understand-
ing of the physical phenomena and yet with less work, the problems can be solved. The
following sections provides further explanation.

7.3.1 Energy Equation in Steady State

The steady state situation provides several ways to reduce the complexity. The time
derivative term can be eliminated since the time derivative is zero. The acceleration
term must be eliminated for the obvious reason. Hence the energy equation is reduced
to

Q̇− Ẇshear − Ẇshaft =
∫

S

(
h +

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUbndA

Steady State Equation

(7.72)

If the flow is uniform or can be estimated as uniform, equation (7.72) is reduced to

Q̇− Ẇshear − Ẇshaft =
(

h +
U2

2
+ g z

)
Urn ρAout−

(
h +

U2

2
+ g z

)
Urn ρAin + PUbnAout − PUbnAin

Steady State Equation & uniform

(7.73)

It can be noticed that last term in equation (7.73) for non-deformable control volume
does not vanished. The reason is that while the velocity is constant, the pressure is dif-
ferent. For a stationary fix control volume the energy equation, under this simplification
transformed to

Q̇− Ẇshear − Ẇshaft =
(

h +
U2

2
+ g z

)
Urn ρAout−

(
h +

U2

2
+ g z

)
Urn ρAin (7.74)
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Dividing equation the mass flow rate provides

q̇ − ẇshear − ẇshaft =
(

h +
U2

2
+ g z

)∣∣∣∣
out

−
(

h +
U2

2
+ g z

)∣∣∣∣
in

Steady State Equation, Fix ṁ & uniform

(7.75)

7.3.2 Energy Equation in Frictionless Flow and Steady State

In cases where the flow can be estimated without friction or where a quick solution is
needed the friction and other losses are illuminated from the calculations. This imaginary
fluid reduces the amount of work in the calculations and Ideal Flow Chapter is dedicated
in this book. The second low is the core of “no losses” and can be employed when
calculations of this sort information is needed. Equation (2.21) which can be written as

dqrev = T ds = dEu + P dv (7.76)

Using the multiplication rule change equation (7.76)

dqrev = dEu + d (P v)− v dP = dEu + d

(
P

ρ

)
− v dP (7.77)

integrating equation (7.77) yields

∫
dqrev =

∫
dEu +

∫
d

(
P

ρ

)
−

∫
v dP (7.78)

qrev = Eu +
(

P

ρ

)
−

∫
dP

ρ
(7.79)

Integration over the entire system results in

Qrev =
∫

V

h︷ ︸︸ ︷(
Eu +

(
P

ρ

))
ρ dV −

∫

V

(∫
dP

ρ

)
ρ dV (7.80)

Taking time derivative of the equation (7.80) becomes

Q̇rev =
D

Dt

∫

V

h︷ ︸︸ ︷(
Eu +

(
P

ρ

))
ρ dV − D

Dt

∫

V

(∫
dP

ρ

)
ρ dV (7.81)

Using the Reynolds Transport Theorem to transport equation to control volume results
in

Q̇rev =
d

dt

∫

V

h ρ dV +
∫

A

hUrn ρ dA +
D

Dt

∫

V

(∫
dP

ρ

)
ρ dV (7.82)
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As before equation (7.81) can be simplified for uniform flow as

Q̇rev = ṁ

[
(hout − hin)−

(∫
dP

ρ

∣∣∣∣
out

−
∫

dP

ρ

∣∣∣∣
in

)]
(7.83)

or

q̇rev = (hout − hin)−
(∫

dP

ρ

∣∣∣∣
out

−
∫

dP

ρ

∣∣∣∣
in

)
(7.84)

Subtracting equation (7.84) from equation (7.75) results in

0 = wshaft +

change
in
pressure
energy︷ ︸︸ ︷(∫

dP

ρ

∣∣∣∣
2

−
∫

dP

ρ

∣∣∣∣
1

)
+

change
in kinetic
energy︷ ︸︸ ︷

U2
2 − U1

2

2
+

change
in po-
tential
energy︷ ︸︸ ︷

g (z2 − z1) (7.85)

Equation (7.85) for constant density is

0 = wshaft +
P2 − P1

ρ
+

U2
2 − U1

2

2
+ g (z2 − z1) (7.86)

For no shaft work equation (7.86) reduced to

0 =
P2 − P1

ρ
+

U2
2 − U1

2

2
+ g (z2 − z1) (7.87)

7.4 Energy Equation in Accelerated System
In the discussion so far, it was assumed that the control volume is at rest. The only
acceptation to the above statement, is the gravity that was compensated by the gravity
potential. In building the gravity potential it was assumed that the gravity is a conserva-
tive force. It was pointed earlier in this book that accelerated forces can be translated to
potential force. In many cases, the control volume is moving in accelerated coordinates.
These accelerations will be translated to potential energy.

The accelerations are referring to two kinds of acceleration, linear and rotational.
There is no conceptional difference between these two accelerations. However, the
mathematical treatment is somewhat different which is the reason for the separation.
General Acceleration can be broken into a linear acceleration and a rotating acceleration.

7.4.1 Energy in Linear Acceleration Coordinate

The potential is defined as

P.E. = −
∫ 2

ref

FFF · d`d`d` (7.88)
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In Chapter 3 a discussion about gravitational energy potential was presented. For
example, for the gravity force is

F = −GM m

r2
(7.89)

Where G is the gravity coefficient and M is the mass of the Earth. r and m are the
distance and mass respectively. The gravity potential is then

PEgravity = −
∫ r

∞
−GM m

r2
dr (7.90)

The reference was set to infinity. The gravity force for fluid element in small distance
then is g dz dm. The work this element moving from point 1 to point 2 is

∫ 2

1

g dz dm = g (z2 − z1) dm (7.91)

The total work or potential is the integral over the whole mass.

7.4.2 Linear Accelerated System

The acceleration can be employed in similar fashion as the gravity force. The linear
acceleration “creates” a conservative force of constant force and direction. The “po-
tential” of moving the mass in the field provides the energy. The Force due to the
acceleration of the field can be broken into three coordinates. Thus, the element of the
potential is

dPEa = aaa · d`̀̀ dm (7.92)

The total potential for element material

PEa =
∫ (1)

(0)

aaa · d`̀̀ dm = (ax (x1 − x0) ay (y1 − y0) az (z1 − z0)) dm (7.93)

At the origin (of the coordinates) x = 0, y = 0, and z = 0. Using this trick the notion
of the ax (x1 − x0) can be replaced by ax x. The same can be done for the other two
coordinates. The potential of unit material is

PEatotal =
∫

sys

(ax x + ay y + az z) ρ dV (7.94)

The change of the potential with time is

D

Dt
PEatotal =

D

Dt

∫

sys

(ax x + ay y + az z) dm (7.95)
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Equation can be added to the energy equation as

Q̇− Ẇ =
D

Dt

∫

sys

[
Eu +

U2

2
+ ax x + ay y + (az + g)z

]
ρ dV (7.96)

The Reynolds Transport Theorem is used to transferred the calculations to control
volume as

Q̇− Ẇ =
d

dt

∫

cv

[
Eu +

U2

2
+ ax x + ay y + (az + g)z

]
ρ dV

+
∫

cv

(
h +

U2

2
+ ax x + ay y + (az + g)z

)
Urn ρ dA

+
∫

cv

P Ubn dA

Energy Equation in Linear Accelerated Coordinate

(7.97)

7.4.3 Energy Equation in Rotating Coordinate System

The coordinate system rotating around fix axises creates a similar conservative potential
as a linear system. There are two kinds of acceleration due to this rotation; one is the
centrifugal and one the Coriolis force. To understand it better, consider a particle which
moves with the our rotating system. The forces acting on particles are

FFF =




centrifugal︷ ︸︸ ︷
ω2 r r̂ +

Coriolis︷ ︸︸ ︷
2UUU × ω


 dm (7.98)

The work or the potential then is

PE =
(
ω2 r r̂ + 2UUU × ω

) · d` dm (7.99)

The cylindrical coordinate are

d` = drr̂ + r dθ θ̂ + dz k̂ (7.100)

where r̂, θ̂, and k̂ are units vector in the coordinates r, θ and z respectively. The
potential is then

PE =
(
ω2 r r̂ + 2UUU × ω

) ·
(
drr̂ + r dθ θ̂ + dz k̂

)
dm (7.101)

The first term results in ω2 r2 (see for explanation in the appendix 363 for vector
explanation). The cross product is zero of

UUU × ω ×UUU = UUU × ω × ω = 0
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because the first multiplication is perpendicular to the last multiplication. The second
part is

(2UUU × ω) · d` dm (7.102)

This multiplication does not vanish with the exception of the direction of UUU . However,
the most important direction is the direction of the velocity. This multiplication creates
lines (surfaces ) of constant values. From a physical point of view, the flux of this
property is important only in the direction of the velocity. Hence, this term canceled
and does not contribute to the potential.

The net change of the potential energy due to the centrifugal motion is

PEcentrifugal = −
∫ 2

1

ω2 r2 dr dm =
ω2

(
r1

2 − r2
2
)

2
dm (7.103)

Inserting the potential energy due to the centrifugal forces into the energy equation
yields

Q̇− Ẇ =
d

dt

∫

cv

[
Eu +

U2

2
+ ax x + ay y + (az + g)z − ω2 r2

2

]
ρ dV

+
∫

cv

(
h +

U2

2
+ ax x + ay y + (az + g)− z

ω2 r2

2

)
Urn ρ dA

+
∫

cv

P Ubn dA

Energy Equation in Accelerated Coordinate

(7.104)

7.4.4 Simplified Energy Equation in Accelerated Coordinate

7.4.4.1 Energy Equation in Accelerated Coordinate with Uniform Flow

One of the way to simplify the general equation (7.104) is to assume uniform flow. In
that case the time derivative term vanishes and equation (7.104) can be written as

Q̇− Ẇ =
∫

cv

(
h +

U2

2
+ ax x + ay y + (az + g)− z

ω2 r2

2

)
Urn ρ dA

+
∫

cv

P Ubn dA

Energy Equation in steady state

(7.105)
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Further simplification of equation (7.105) by assuming uniform flow for which

Q̇− Ẇ =

(
h +

U
2

2
+ ax x + ay y + (az + g)− z

ω2 r2

2

)
Urn ρ dA (7.106)

+
∫

cv

P U bn dA

Note that the acceleration also have to be averaged. The correction factors have
to introduced into the equation to account for the energy averaged verse to averaged
velocity (mass averaged). These factor make this equation with larger error and thus
less effective tool in the engineering calculation.

7.4.5 Energy Losses in Incompressible Flow

In the previous sections discussion, it was assumed that there are no energy loss. How-
ever, these losses are very important for many real world application. And these losses
have practical importance and have to be considered in engineering system. Hence
writing equation (7.15) when the energy and the internal energy as a separate identity
as

Ẇshaft =
d

dt

∫

V

(
U2

2
+ g z

)
ρ dV +

∫

A

(
P

ρ
+

U2

2
+ g z

)
Urn ρ dA +

∫

A

PUbndA+

energy loss︷ ︸︸ ︷
d

dt

∫

V

Eu ρ dV +
∫

A

Eu Urn ρ dA− Q̇− Ẇshear

(7.107)

Equation (7.107) sometimes written as

Ẇshaft =
d

dt

∫

V

(
U2

2
+ g z

)
ρ dV +

∫

A

(
P

ρ
+

U2

2
+ g z

)
Urn ρ dA +

∫

A

PUbndA + energy loss

(7.108)

Equation can be further simplified under assumption of uniform flow and steady
state as

ẇshaft =
(

P

ρ
+

U2

2
+ g z

)∣∣∣∣
out

−
(

P

ρ
+

U2

2
+ g z

)∣∣∣∣
in

+ energy loss (7.109)

Equation (7.109) suggests that term h + U2

2 + g z has a special meaning (because it
remained constant under certain conditions). This term, as will be shown, has to be con-
stant for frictionless flow without any addition and loss of energy. This term represents
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the “potential energy.” The loss is the combination of the internal energy/enthalpy
with heat transfer. For example, fluid flow in a pipe has resistance and energy dissipa-
tion. The dissipation is lost energy that is transferred to the surroundings. The loss is
normally is a strong function of the velocity square, U2/2. There are several categories
of the loss which referred as minor loss (which are not minor), and duct losses. These
losses will be tabulated later on.

If the energy loss is negligible and the shaft work vanished or does not exist
equation (7.109) reduces to simple Bernoulli’s equation.

0 =
(

P

ρ
+

U2

2
+ g z

)∣∣∣∣
out

−
(

P

ρ
+

U2

2
+ g z

)∣∣∣∣
in

Simple Bernoulli

(7.110)

Equation (7.110) is only a simple form of Bernoulli’s equation which was developed by
Bernoulli’s adviser, Euler. There also unsteady state and other form of this equation
that will be discussed in differential equations Chapter.

7.5 Examples of Integral Energy Conservation

Example 7.1:
Consider a flow in a long straight pipe. Initially the flow is in a rest. At time, t0 the

L

Fig. -7.6. Flow in a long pipe when
exposed to a jump in the pressure
difference.

a constant pressure difference is applied on
the pipe. Assume that flow is incompress-
ible, and the resistance or energy loss is
f . Furthermore assume that this loss is a
function of the velocity square. Develop
equation to describe the exit velocity as a
function of time. State your assumptions.

Solution

The mass balance on the liquid in the pipe results in

0 =

=0︷ ︸︸ ︷∫

V

∂ρ

∂t
dV +

=0︷ ︸︸ ︷∫

A

ρUbndA+
∫

A

ρUrndA =⇒ ¢ρ¡A Uin = ¢ρ¡AUexit
(7.I.a)

There is no change in the liquid mass inside pipe and therefore the time derivative is
zero (the same mass resides in the pipe at all time). The boundaries do not move and
the second term is zero. Thus, the flow in and out are equal because the density is
identical. Furthermore, the velocity is identical because the cross area is same.

It can be noticed that for the energy balance on the pipe, the time derivative can
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enter the integral because the control volume has fixed boundaries. Hence,

Q̇−
=0︷ ︸︸ ︷

Ẇshear +

=0︷ ︸︸ ︷
Ẇshaft =

∫

V

d

dt

(
Eu +

U2

2
+ g z

)
ρ dV +

∫

S

(
h +

U2

2
+ g z

)
Urn ρ dA +

∫

S

PUbndA

(7.I.b)

The boundaries shear work vanishes because the same arguments present before (the
work, where velocity is zero, is zero. In the locations where the velocity does not
vanished, such as in and out, the work is zero because shear stress are perpendicular to
the velocity).

There is no shaft work and this term vanishes as well. The first term on the right
hand side (with a constant density) is

ρ

∫

Vpipe

d

dt

(
Eu +

U2

2
+

constant︷︸︸︷
g z

)
dV = ρ U

d U

dt

L π r2︷ ︸︸ ︷
Vpipe +ρ

∫

Vpipe

d

dt
(Eu) dV

(7.I.c)
where L is the pipe length, r is the pipe radius, U averaged velocity.

In this analysis, it is assumed that the pipe is perpendicular to the gravity line and
thus the gravity is constant. The gravity in the first term and all other terms, related to
the pipe, vanish again because the value of z is constant. Also, as can be noticed from
equation (7.I.a), the velocity is identical (in and out). Hence the second term becomes

∫

A


h +




©©©©©*
constant

U2

2
+ g z





 ρUrndA =

∫

A

h︷ ︸︸ ︷(
Eu +

P

ρ

)
ρUrndA (7.I.d)

Equation (7.I.d) can be further simplified (since the area and averaged velocity are
constant, additionally notice that U = Urn) as

∫

A

(
Eu +

P

ρ

)
ρUrndA = ∆P U A +

∫

A

ρEu Urn dA (7.I.e)

The third term vanishes because the boundaries velocities are zero and therefore∫

A

P UbndA = 0 (7.I.f)

Combining all the terms results in

Q̇ = ρU
dU

dt

L π r2︷ ︸︸ ︷
Vpipe +ρ

d

dt

∫

Vpipe

Eu dV + ∆P U dA +
∫

A

ρEu U dA (7.I.g)

equation (7.I.g) can be rearranged as

−K U2
2︷ ︸︸ ︷

Q̇− ρ

∫

Vpipe

d (Eu)
dt

dV −
∫

A

ρEu U dA = ρL π r2 U
dU

dt
+ (Pin − Pout) U

(7.I.h)
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The terms on the LHS (left hand side) can be combined. It common to assume (to
view) that these terms are representing the energy loss and are a strong function of
velocity square19. Thus, equation (7.I.h) can be written as

−K
U2

2
= ρL π r2 U

d U

dt
+ (Pin − Pout) U (7.I.i)

Dividing equation (7.I.i) by K U/2 transforms equation (7.I.i) to

U +
2 ρL π r2

K

dU

dt
=

2 (Pin − Pout)
K

(7.I.j)

Equation (7.I.j) is a first order differential equation. The solution this equation is
described in the appendix and which is

U = e
−
0
@ tK

2 π r2 ρL

1
A


2 (Pin − Pout)e

0
@ tK

2 π r2 ρ L

1
A

K
+ c


 e

0
@2 π r2 ρ t L

K

1
A

(7.I.k)
Applying the initial condition, U(t = 0) = 0 results in

U =
2 (Pin − Pout)

K


1−e

−
0
@ tK

2 π r2 ρL

1
A


 (7.I.l)

The solution is an exponentially approaching the steady state solution. In steady state
the flow equation (7.I.j) reduced to a simple linear equation. The solution of the linear
equation and the steady state solution of the differential equation are the same.

U =
2 (Pin − Pout)

K
(7.I.m)

Another note, in reality the resistance, K, is not constant but rather a strong
function of velocity (and other parameters such as temperature20, velocity range, ve-
locity regime and etc.). This function will be discussed in a greater extent later on.
Additionally, it should be noted that if momentum balance was used a similar solution
(but not the same) was obtained (why? hint the difference of the losses accounted
for).

End Solution

The following example combined the above discussion in the text with the above
example (7.1).

19The shear work inside the liquid refers to molecular work (one molecule work on the other molecule).
This shear work can be viewed also as one control volume work on the adjoined control volume.

20Via the viscosity effects.
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Example 7.2:
A large cylindrical tank with a diameter, D, contains liquid to height, h. A long
pipe is connected to a tank from which the liquid is emptied. To analysis this situation,

Vair

2

Patmos

1

3

D

L

d

Fig. -7.7. Liquid exiting a large tank
trough a long tube.

consider that the tank has a constant pres-
sure above liquid (actually a better assump-
tion of air with a constant mass.). The
pipe is exposed to the surroundings and
thus the pressure is Patmos at the pipe exit.
Derive approximated equations that related
the height in the large tank and the exit
velocity at the pipe to pressure difference.
Assume that the liquid is incompressible.
Assume that the resistance or the friction
in the pipe is a strong function to the ve-
locity square in the tank. State all the as-
sumptions that were made during the derivations.

Solution

U1

1

3

D

d
h

Fig. -7.8. Tank control volume for Example 7.2.

This problem can split into two control vol-
umes; one of the liquid in the tank and one
of the liquid in pipe. Analysis of control
volume in the tank was provided previously
and thus needed to be sewed to Example
7.1. Note, the energy loss is considered
(as opposed to the discussion in the text).
The control volume in tank is depicted in
Figure 7.7.

Tank Control Volume

The effect of the energy change in air side was neglected. The effect is negligible
in most cases because air mass is small with exception the “spring” effect (expan-
sion/compression effects). The mass conservation reads

=0︷ ︸︸ ︷∫

V

∂ρ

∂t
dV +

∫

A

ρUbndA +
∫

A

ρ UrndA = 0
(7.II.a)

The first term vanishes and the second and third terms remain and thus equation
(7.II.a) reduces to

¢ρU1 Apipe = ¢ρU3

Atank︷︸︸︷
π R2 = ¢ρ

dh

dt

Atank︷︸︸︷
π R2 (7.II.b)

It can be noticed that U3 = dh/dt and D = 2 R and d = 2 r when the lower case
refers to the pipe and the upper case referred to the tank. Equation (7.II.b) simply can
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be written when the area ratio is used (to be changed later if needed) as

U1 Apipe =
dh

dt
Atank =⇒ U1 =

(
R

r

)2
dh

dt
(7.II.c)

The boundaries shear work and the shaft work are assumed to be vanished in the
tank. Therefore, the energy conservation in the tank reduces to

Q̇−
=0︷ ︸︸ ︷

Ẇshear +

=0︷ ︸︸ ︷
Ẇshaft =

d

dt

∫

Vt

(
Eu +

Ut
2

2
+ g z

)
ρ dV +

∫

A1

(
h +

Ut
2

2
+ g z

)
Urn ρ dA +

∫

A3

PUbndA

(7.II.d)

Where Ut denotes the (the upper surface) liquid velocity of the tank. Moving all
internal energy terms and the energy transfer to the right hand side of equation (7.II.d)
to become

d

dt

∫

Vt

(
Ut

2

2
+ g z

)
ρ dV +

∫

A1

(
P

ρ
+

Ut
2

2
+ g z

) U1︷︸︸︷
Urn ρ dA+

∫

A3

P

U3︷︸︸︷
Ubn dA =

K
Ut

2

2︷ ︸︸ ︷
d

dt

∫

Vt

Euρ dV +
∫

A1

Eu ρ Urn dA− Q̇

(7.111)

Similar arguments to those that were used in the previous discussion are applicable to
this case. Using equation (7.38), the first term changes to

d

dt

∫

V

ρ

(
U2

2
+ g z

)
dV ∼= ρ

d

dt




[
Ut

2

2
+

g h

2

] V︷︸︸︷
hA


 (7.II.e)

Where the velocity is given by equation (7.44). That is, the velocity is a derivative of
the height with a correction factor, U = dh/dt × f(G). Since the focus in this book
is primarily on the physics, f(G) ≡ 1 will be assumed. The pressure component of the
second term is ∫

A

P

¢ρ
Urn ¢ρ dA = ρP1 U1 A1 (7.II.f)

It is assumed that the exit velocity can be averaged (neglecting the velocity distribution
effects). The second term can be recognized as similar to those by equation (7.45).
Hence, the second term is

∫

A

(
U2

2
+

z=0︷︸︸︷
g z

)
Urn ρ dA ∼= 1

2

(
dh

dt

A3

A1

)2

U1 ρA1 =
1
2

(
dh

dt

R

r

)2

U1 ρA1 (7.II.g)
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The last term on the left hand side is∫

A

PUbndA = P3 A
dh

dt
(7.II.h)

The combination of all the terms for the tank results in

d

dt




[
Ut

2

2
+

g h

2

] V︷︸︸︷
hA


− 1

2

(
dh

dt

)2 (
A3

A1

)2

U1 A1 +
Kt

2 ρ

(
dh

dt

)2

=
(P3 − P1)

ρ

(7.II.i)

Pipe Control Volume

The analysis of the liquid in the pipe is similar to Example 7.1. The conservation of the
liquid in the pipe is the same as in Example 7.1 and thus equation (7.I.a) is used

U1 = U2 (7.II.j)

Up +
4 ρL π r2

Kp

dUp

dt
=

2 (P1 − P2)
Kp

(7.II.k)

where Kp is the resistance in the pipe and Up is the (averaged) velocity in the pipe.
Using equation (7.II.c) eliminates the Up as

dh

dt
+

4 ρ Lπ r2

K

d2 h

dt2
=

(
R

r

)2 2 (P1 − P2)
Kp

(7.II.l)

Equation (7.II.l) can be rearranged as

Kp

2 ρ

( r

R

)2
(

dh

dt
+

4 ρL π r2

K

d2 h

dt2

)
=

(P1 − P2)
ρ

(7.II.m)

Solution

The equations (7.II.m) and (7.II.i) provide the frame in which the liquid velocity in tank
and pipe have to be solved. In fact, it can be noticed that the liquid velocity in the
tank is related to the height and the liquid velocity in the pipe. Thus, there is only
one equation with one unknown. The relationship between the height was obtained by
substituting equation (7.II.c) in equation (7.II.m). The equations (7.II.m) and (7.II.i)
have two unknowns (dh/dt and P1) which are sufficient to solve the problem. It can
be noticed that two initial conditions are required to solve the problem.

The governing equation obtained by from adding equation (7.II.m) and (7.II.i) as

d

dt

([
Ut

2

2
+

g h

2

] V︷︸︸︷
h A


− 1

2

(
dh

dt

)2 (
A3

A1

)2

U1 A1 +
Kt

2 ρ

(
dh

dt

)2

+
Kp

2 ρ

( r

R

)2
(

dh

dt
+

4 ρLπ r2

K

d2 h

dt2

)
=

(P3 − P2)
ρ

(7.II.n)



228 CHAPTER 7. ENERGY CONSERVATION

The initial conditions are that zero initial velocity in the tank and pipe. Additionally,
the height of liquid is at prescript point as

h(0) = h0

dh

dt
(0) = 0

(7.II.o)

The solution of equation can be obtained using several different numerical techniques.
The dimensional analysis method can be used to obtain solution various situations which
will be presented later on.

End Solution

Qualitative Questions
� A liquid flows in and out from a long pipe with uniform cross section as single

phase. Assume that the liquid is slightly compressible. That is the liquid has a
constant bulk modulus, BT . What is the direction of the heat from the pipe or
in to the pipe. Explain why the direction based on physical reasoning. What kind
of internal work the liquid performed. Would happen when the liquid velocity is
very large? What it will be still correct.

� A different liquid flows in the same pipe. If the liquid is compressible what is the
direction of the heat to keep the flow isothermal?

� A tank is full of incompressible liquid. A certain point the tank is punctured
and the liquid flows out. To keep the tank at uniform temperature what is the
direction of the heat (from the tank or to the tank)?



Part II

Differential Analysis
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CHAPTER 8

Differential Analysis

8.1 Introduction

The integral analysis has a limited accuracy, which leads to a different approach of dif-
ferential analysis. The differential analysis allows the flow field investigation in greater
detail. In differential analysis, the emphasis is on infinitesimal scale and thus the analysis
provides better accuracy1. This analysis leads to partial differential equations which are
referred to as the Navier-Stokes equations. These equations are named after Claude–
Louis Navier–Marie and George Gabriel Stokes. Like many equations they were indepen-
dently derived by several people. First these equations were derived by Claude–Louis–
Marie Navier as it is known in 1827. As usual Simon-Denis Poisson independently, as
he done to many other equations or conditions, derived these equations in 1831 for
the same arguments as Navier. The foundations for their arguments or motivations are
based on a molecular view of how stresses are exerted between fluid layers. Barré de
Saint Venant (1843) and George Gabriel Stokes (1845) derived these equation based
on the relationship between stress and rate–of–strain (this approach is presented in this
book).

Navier-Stokes equations are non–linear and there are more than one possible
solution in many cases (if not most cases) e.g. the solution is not unique. A discussion
about the “regular” solution is present and a brief discussion about limitations when
the solution is applicable. Later in the Chapters on Real Fluid and Turbulence, with
a presentation of the “non–regular” solutions will be presented with the associated
issues of stability. However even for the “regular” solution the mathematics is very
complex. One of the approaches is to reduce the equations by eliminating the viscosity
effects. The equations without the viscosity effects are referred to as the ideal flow
equations (Euler Equations) which will be discussed in the next chapter. The concepts

1Which can be view as complementary analysis to the integral analysis.
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of the Add Mass and the Add Force, which are easier to discuss when the viscosity
is ignored, and will be presented in the Ideal Flow chapter. It has to be pointed
out that the Add Mass and Add Force appear regardless to the viscosity. Historically,
complexity of the equations, on one hand, leads to approximations and consequently to
the ideal flow approximation (equations) and on the other hand experimental solutions
of Navier–Stokes equations. The connection between these two ideas or fields was done
via introduction of the boundary layer theory by Prandtl which will be discussed as well.

Even for simple situations, there are cases when complying with the boundary
conditions leads to a discontinuity (shock or choked flow). These equations cannot
satisfy the boundary conditions in other cases and in way the fluid pushes the boundary
condition(s) further downstream (choked flow). These issues are discussed in Open
Channel Flow and Compressible Flow chapters. Sometimes, the boundary conditions
create instability which alters the boundary conditions itself which is known as Interfacial
instability. The choked flow is associated with a single phase flow (even the double
choked flow) while the Interfacial instability associated with the Multi–Phase flow. This
phenomenon is presented in Multi–phase chapter and briefly discussed in this chapter.

8.2 Mass Conservation

A B

C D

E F

G
H

x

(

ρ +
dρ

dz

)(

Uz +
dUz

dz

)

dxdy

(

ρ
+

dρ

dy

)

(

Uy
+

dU
y

dy

)

dx
dz

(

ρ +
dρ

dx

)(

Ux +
dUx

dx

)

dydz

ρUz dxdy

ρUx dydz

ρ
Uy

dx
dz

Fig. -8.1. The mass balance on the infinitesimal control
volume.

Fluid flows into and from a three
dimensional infinitesimal control
volume depicted in Figure 8.1. At
a specific time this control vol-
ume can be viewed as a system.
The mass conservation for this in-
finitesimal small system is zero
thus

D

Dt

∫

V

ρdV = 0 (8.1)

However for a control volume us-
ing Reynolds Transport Theorem (RTT), the following can be written

D

Dt

∫

V

ρdV =
d

dt

∫

V

ρdV +
∫

A

Urn ρ dA = 0 (8.2)

For a constant control volume, the derivative can enter into the integral (see also for
the divergence theorem in the appendix A.1.2) on the right hand side and hence

dρ
dt dV︷ ︸︸ ︷∫

V

dρ

dt
dV +

∫

A

Urn ρ dA = 0 (8.3)
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The first term in equation (8.3) for the infinitesimal volume is expressed, neglecting
higher order derivatives, as

∫

V

dρ

dt
dV =

dρ

dt

dV︷ ︸︸ ︷
dx dy dz +

∼0︷ ︸︸ ︷
f

(
d2ρ

dt2

)
+ · · · (8.4)

The second term in the LHS of equation (8.2) is expressed2 as

∫

A

Urn ρ dA =

dAyz︷ ︸︸ ︷
dy dz

[
(ρUx)|x − (ρUx)|x+dx

]
+

dAxz︷ ︸︸ ︷
dx dz

[
(ρUy)|y − (ρUy)|y+dy

]
+

dAxz︷ ︸︸ ︷
dx dy

[
(ρUz)|z − (ρUz)|z+dz

]

(8.5)

The difference between point x and x+dx can be obtained by developing Taylor series
as

(ρUx)|x+dx = (ρUx)|x +
∂ (ρUx)

∂x

∣∣∣∣
x

dx (8.6)

The same can be said for the y and z coordinates. It also can be noticed that, for
example, the operation, in the x coordinate, produces additional dx thus a infinitesimal
volume element dV is obtained for all directions. The combination can be divided by
dx dy dz and simplified by using the definition of the partial derivative in the regular
process to be

∫

A

Urn ρ dA = −
[
∂(ρUx)

∂x
+

∂(ρUy)
∂y

+
∂(ρ Uz)

∂z

]
(8.7)

Combining the first term with the second term results in the continuity equation
in Cartesian coordinates as

∂ρ

∂t
+

∂ρ Ux

∂x
+

∂ρ Uy

∂y
+

∂ρ Uz

∂z
= 0

Continuity in Cartesian Coordinates

(8.8)

Cylindrical Coordinates

The same equation can be derived in cylindrical coordinates. The net mass
change, as depicted in Figure 8.2, in the control volume is

d ṁ =
∂ρ

∂t

dv︷ ︸︸ ︷
dr dz r dθ (8.9)

2Note that sometime the notation dAyz also refers to dAx.
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rdθ

ρUz r drdθ

ρUθ drdθ

ρUr

r d
θ dz



ρUθ +
∂ (ρUθ)

∂θ
dθ



 drdz



ρUz r +
∂ (ρUr r)

∂z
dz



 dθ dr





ρUz

r +
∂ (ρ

Ur

r)

∂z

dr





dθ dz

dr

dz

r

x

θ

yz

Fig. -8.2. The mass conservation in cylindrical coordinates.

The net mass flow out or in the r̂ direction has an additional term which is the
area change compared to the Cartesian coordinates. This change creates a different
differential equation with additional complications. The change is

(
flux in r
direction

)
= dθ dz

(
r ρUr −

(
r ρ Ur +

∂ρ Ur r

∂r
dr

))
(8.10)

The net flux in the r direction is then
(
net flux in the
r direction

)
= dθ dz

∂ρ Ur r

∂r
dr (8.11)

Note3 that the r is still inside the derivative since it is a function of r, e.g. the change
of r with r. In a similar fashion, the net flux in the z coordinate be written as

net flux in z direction = r dθ dr
∂ (ρUz)

∂z
dz (8.12)

The net change in the θ direction is then

net flux in θ direction = dr dz
∂ρ Uθ

∂θ
dθ (8.13)

Combining equations (8.11)–(8.13) and dividing by infinitesimal control volume, dr r dθ dz,
results in

(
total
net flux

)
= −

(
1
r

∂ (ρUr r)
∂r

+
∂ρ Uz r

∂z
+

∂ρ Uθ

∂θ

)
(8.14)

3The mass flow is ρ Ur r dθ dz at r point. Expansion to Taylor serious ρ Ur r dθ dz|r+dr is obtained
by the regular procedure. The mass flow at r + dr is ρ Ur r dθ dz|r + d/dr (ρ Ur r dθ dz) dr + · · · .
Hence, the r is “trapped” in the derivative.
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Combining equation (8.14) with the change in the control volume (8.9) divided
by infinitesimal control volume, dr r dθ dz yields

∂ρ

∂t
+

1
r

∂ (r ρ Ur)
∂r

+
1
r

∂ρUθ

∂θ
+

∂ρUz

∂z
= 0

Continuity in Cylindrical Coordinates

(8.15)

Carrying similar operations for the spherical coordinates, the continuity equation
becomes

∂ρ

∂t
+

1
r2

∂
(
r2 ρUr

)

∂r
+

1
r sin θ

∂ (ρUθ sin θ)
∂θ

+
1

r sin θ

∂ρUφ

∂z
= 0

Continuity in Spherical Coordinates

(8.16)

The continuity equations (8.8), (8.15) and (8.16) can be expressed in different coor-
dinates. It can be noticed that the second part of these equations is the divergence
(see the Appendix A.1.2 page 366). Hence, the continuity equation can be written in a
general vector form as

∂ρ

∂t
+ ∇ · (ρUUU) = 0

Continuity Equation

(8.17)

Advance material can be skipped

The mass equation can be written in index notation for Cartesian coordinates.
The index notation really does not add much to the scientific understanding. However,
this writing reduce the amount of writing and potentially can help the thinking about
the problem or situation in more conceptional way. The mass equation (see in the
appendix for more information on the index notation) written as

∂ρ

∂t
+

∂ (ρU)i

∂xi
= 0 (8.18)

Where i is is of the i, j, and k4. Compare to equation (8.8). Again remember that
the meaning of repeated index is summation.

End Advance material

The use of these equations is normally combined with other equations (momentum
and or energy equations). There are very few cases where this equation is used on its
own merit. For academic purposes, several examples are constructed here.

4notice the irony the second i is the dirction and first i is for any one of direction x(i), y(j), and
z(k).
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8.2.1 Mass Conservation Examples

Example 8.1:
A layer of liquid has an initial height of H0 with an uniform temperature of T0. At
time, t0, the upper surface is exposed to temperature T1 (see Figure 8.3). Assume that

y

T1

H0(t)

T0
ρ

0

ρ
1

T(t =∞)T(t > 0)T(t = 0)

Fig. -8.3. Mass flow due to temperature
difference for example 8.1

the actual temperature is exponentially
approaches to a linear temperature profile
as depicted in Figure 8.3. The density is
a function of the temperature according
to

T − T0

T1 − T0
= α

(
ρ− ρ0

ρ1 − ρ0

)
(8.I.a)

where ρ1 is the density at the surface
and where ρ0 is the density at the bot-
tom. Assume that the velocity is only a
function of the y coordinate. Calculates
the velocity of the liquid. Assume that the velocity at the lower boundary is zero at all
times. Neglect the mutual dependency of the temperature and the height.

Solution

The situation is unsteady state thus the unsteady state and one dimensional continuity
equation has to be used which is

∂ρ

∂t
+

∂ (ρUy)
∂y

= 0 (8.I.b)

with the boundary condition of zero velocity at the lower surface Uy(y = 0) = 0. The
expression that connects the temperature with the space for the final temperature as

T − T0

T1 − T0
= α

H0 − y

H0
(8.I.c)

The exponential decay is
(
1− e−β t

)
and thus the combination (with equation (8.I.a))

is
ρ− ρ0

ρ1 − ρ0
= α

H0 − y

H0

(
1− e−β t

)
(8.I.d)

Equation (8.I.d) relates the temperature with the time and the location was given in
the question (it is not the solution of any model). It can be noticed that the height H0

is a function of time. For this question, it is treated as a constant. Substituting the
density, ρ, as a function of time into the governing equation (8.I.b) results in

∂ρ
∂t︷ ︸︸ ︷

α β

(
H0 − y

H0

)
e−β t +

∂ρ Uy
∂y︷ ︸︸ ︷

∂
(
Uy α H0−y

H0

(
1− e−β t

))

∂y
= 0

(8.I.e)
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Equation (8.I.e) is first order ODE with the boundary condition Uy(y = 0) = 0 which
can be arranged as

∂
(
Uy α H0−y

H0

(
1− e−β t

))

∂y
= −α β

(
H0 − y

H0

)
e−β t (8.I.f)

Uy is a function of the time but not y. Equation (8.I.f) holds for any time and thus, it
can be treated for the solution of equation (8.I.f) as a constant5. Hence, the integration
with respect to y yields

(
Uy α

H0 − y

H0

(
1− e−β t

))
= −α β

(
2 H0 − y

2 H0

)
e−β ty + c (8.I.g)

Utilizing the boundary condition Uy(y = 0) = 0 yields

(
Uy α

H0 − y

H0

(
1− e−β t

))
= −α β

(
2 H0 − y

2 H0

)
e−β t (y − 1) (8.I.h)

or the velocity is

Uy = β

(
2 H0 − y

2 (H0 − y)

)
e−β t

(1− e−β t)
(1− y) (8.I.i)

It can be noticed that indeed the velocity is a function of the time and space y.
End Solution

8.2.2 Simplified Continuity Equation

A simplified equation can be obtained for a steady state in which the transient term is
eliminated as (in a vector form)

∇ · (ρUUU) = 0 (8.19)

If the fluid is incompressible then the governing equation is a volume conservation as

∇ ·UUU = 0 (8.20)

Note that this equation appropriate only for a single phase case.

Example 8.2:
In many coating processes a thin film is created by a continuous process in which liquid
injected into a moving belt which carries the material out as exhibited in Figure 8.4.

5Since the time can be treated as a constant for y integration.
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x

H0 T(x)

T0

T0 T∞

x

Fig. -8.4. Mass flow in coating process
for example 8.2.

The temperature and mass transfer tak-
ing place which reduces (or increases) the
thickness of the film. For this example, as-
sume that no mass transfer occurs or can
be neglected and the main mechanism is
heat transfer. Assume that the film tem-
perature is only a function of the distance
from the extraction point. Calculate the
film velocity field if the density is a func-
tion of the temperature. The relationship between the density and the temperature is
linear as

ρ− ρ∞
ρ0 − ρ∞

= α

(
T − T∞
T0 − T∞

)
(8.II.a)

State your assumptions.

Solution

This problem is somewhat similar to Example 8.16, however it can be considered as
steady state. At any point the governing equation in coordinate system that moving
with the belt is

∂ (ρUx)
∂x

+
∂ (ρUy)

∂y
= 0 (8.II.b)

At first, it can be assumed that the material moves with the belt in the x direction
in the same velocity. This assumption is consistent with the first solution (no stability
issues). If the frame of reference was moving with the belt then there is only velocity
component in the y direction7. Hence equation (8.II.b) can be written as

Ux
∂ρ

∂x
= −∂ (ρUy)

∂y
(8.II.c)

Where Ux is the belt velocity.
See the resembles to equation (8.I.b). The solution is similar to the previous

Example 8.1 for a general function T = F (x).

∂ρ

∂x
=

α

Ux

∂F (x)
∂x

(ρ0 − ρ∞) (8.II.d)

Substituting this relationship in equation (8.II.d) into the governing equation results in

∂Uy ρ

∂y
=

α

Ux

∂F (x)
∂x

(ρ0 − ρ∞) (8.II.e)

6The presentation of one dimension time dependent problem to two dimensions problems can be
traced to heat and mass transfer problems. One of the early pioneers who suggest this idea is Higbie
which Higbie’s equation named after him. Higbie’s idea which was rejected by the scientific establish-
ment. He spend the rest of his life to proof it and ending in a suicide. On personal note, this author
Master thesis is extension Higbie’s equation.

7In reality this assumption is correct only in a certain range. However, the discussion about this
point is beyond the scope of this section.
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The density is expressed by equation (8.II.a) and thus

Uy =
α

ρUx

∂F (x)
∂x

(ρ0 − ρ∞) y + c (8.II.f)

Notice that ρ could “come” out of the derivative (why?) and move into the RHS.
Applying the boundary condition Uy(t = 0) = 0 results in

Uy =
α

ρ(x) Ux

∂F (x)
∂x

(ρ0 − ρ∞) y (8.II.g)

End Solution

Example 8.3:
The velocity in a two dimensional field is assumed to be in a steady state. Assume
that the density is constant and calculate the vertical velocity (y component) for the
following x velocity component.

Ux = a x2 + b y2 (8.III.a)

Next, assume the density is also a function of the location in the form of

ρ = m ex+y (8.III.b)

Where m is constant. Calculate the velocity field in this case.

Solution

The flow field must comply with the mass conservation (8.20) thus

2 a x +
∂Uy

∂y
= 0 (8.III.c)

Equation (8.III.c) is an ODE with constant coefficients. It can be noted that x should
be treated as a constant parameter for the y coordinate integration. Thus,

Uy = −
∫

2 a x + f(x) = −2 x y + f(x) (8.III.d)

The integration constant in this case is not really a constant but rather an arbitrary
function of x. Notice the symmetry of the situation. The velocity, Ux has also arbitrary
function in the y component.

For the second part equation (8.19) is applicable and used as

∂
(
a x2 + b y2

)
(mex+y)

∂x
+

∂ Uy (m ex+y)
∂y

= 0 (8.III.e)
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Taking the derivative of the first term while moving the second part to the other side
results in

a

(
2 x + x2 +

b

a
y2

)
ex+y = − (

ex+y
) (

∂ Uy

∂y
+ Uy

)
(8.III.f)

The exponent can be canceled to further simplify the equation (8.III.f) and switching
sides to be (

∂ Uy

∂y
+ Uy

)
= −a

(
2 x + x2 +

b

a
y2

)
(8.III.g)

Equation (8.III.g) is a first order ODE that can be solved by combination of the
homogeneous solution with the private solution (see for an explanation in the Appendix).
The homogeneous equation is

(
∂ Uy

∂y
+ Uy

)
= 0 (8.III.h)

The solution for (8.III.h) is Uy = c e−y (see for an explanation in the appendix). The
private solution is

Uy|private =
(−b

(
y2 − 2 y + 2

)− a x2 − 2 a x
)

(8.III.i)

The total solution is

Uy = c e−y +
(−b

(
y2 − 2 y + 2

)− a x2 − 2 a x
)

(8.III.j)

End Solution

Example 8.4:
Can the following velocities co-exist

Ux = (x t)2 z Uy = (x t) + (y t) + (z t) Uz = (x t) + (y t) + (z t) (8.IV.a)

in the flow field. Is the flow is incompressible? Is the flow in a steady state condition?

Solution

Whether the solution is in a steady state or not can be observed from whether the
velocity contains time component. Thus, this flow field is not steady state since it
contains time componnet. This continuity equation is checked if the flow incompressible
(constant density). The derivative of each componnet are

∂Ux

∂x
= t2 z

∂Uy

∂y
= t

∂Uz

∂z
= t (8.IV.b)

Hence the gradient or the combination of these derivatives is

∇UUU = t2 z + 2 t (8.IV.c)
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The divergence isn’t zero thus this flow, if it exist, must be compressible flow. This flow
can exist only for a limit time since over time the divergence is unbounded (a source
must exist).

End Solution

Example 8.5:
Find the density as a function of the time for a given one dimensional flow with Ux =
x e5 α y (cos (α t)). The initial density is ρ(t = 0) = ρ0.

Solution

This problem is one dimensional unsteady state and for a compressible substance.
Hence, the mass conservation is reduced only for one dimensional form as

∂ρ

∂t
+

∂ (Ux ρ)
∂x

= 0 (8.V.a)

Mathematically speaking, this kind of presentation is possible. However physically
there are velocity components in y and z directions. In this problem, these physical
components are ignored for academic reasons. Equation (8.V.a) is first order partial
differential equation which can be converted to an ordinary differential equations when
the velocity component, Ux, is substituted. Using,

∂Ux

∂x
= e5 α y (cos (α t)) (8.V.b)

Substituting equation (8.V.b) into equation (8.V.a) and noticing that the density, ρ, is
a function of x results of

∂ρ

∂t
= −ρ x e5 α y (cos (α t))− ∂ρ

∂x
e5 α y (cos (α t)) (8.V.c)

Equation (8.V.c) can be separated to yield

f(t)︷ ︸︸ ︷
1

cos (α t)
∂ρ

∂t
=

f(y)︷ ︸︸ ︷
−ρ x e5 α y − ∂ρ

∂x
e5 α y (8.V.d)

A possible solution is when the left and the right hand sides are equal to a constant.
In that case the left hand side is

1
cos (α t)

∂ρ

∂t
= c1 (8.V.e)

The solution of equation (8.V.e) is reduced to ODE and its solution is

ρ =
c1 sin (α t)

α
+ c2 (8.V.f)
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The same can be done for the right hand side as

ρ x e5 α y +
∂ρ

∂x
e5 α y = c1 (8.V.g)

The term e5 α y is always positive, real value, and independent of y thus equation
(8.V.g) becomes

ρ x +
∂ρ

∂x
=

c1

e5 α y
= c3 (8.V.h)

Equation (8.V.h) is a constant coefficients first order ODE which its solution discussed
extensively in the appendix. The solution of (8.V.h) is given by

ρ = e−
x2
2




c−

impossible solution︷ ︸︸ ︷√
π i c3 erf

(
i x√

2

)
√

2


 (8.V.i)

which indicates that the solution is a complex number thus the constant, c3, must
be zero and thus the constant, c1 vanishes as well and the solution contain only the
homogeneous part and the private solution is dropped

ρ = c2 e−
x2
2 (8.V.j)

The solution is the multiplication of equation (8.V.j) by (8.V.f) transfered to

ρ = c2 e−
x2
2

(
c1 sin (α t)

α
+ c2

)
(8.V.k)

Where the constant, c2, is an arbitrary function of the y coordinate.
End Solution

8.3 Conservation of General Quantity

8.3.1 Generalization of Mathematical Approach for Derivations

In this section a general approach for the derivations for conservation of any quantity
e.g. scalar, vector or tensor, are presented. Suppose that the property φ is under a
study which is a function of the time and location as φ(x, y, z, t). The total amount of
quantity that exist in arbitrary system is

Φ =
∫

sys

φρ dV (8.21)

Where Φ is the total quantity of the system which has a volume V and a surface area
of A which is a function of time. A change with time is

DΦ
Dt

=
D

Dt

∫

sys

φρ dV (8.22)
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Using RTT to change the system to a control volume (see equation (5.33)) yields

D

Dt

∫

sys

φρ dV =
d

dt

∫

cv

φρ dV +
∫

A

ρφUUU · dA (8.23)

The last term on the RHS can be converted using the divergence theorem (see the
appendix8) from a surface integral into a volume integral (alternatively, the volume
integral can be changed to the surface integral) as

∫

A

ρφUUU · dA =
∫

V

∇ · (ρφUUU) dV (8.24)

Substituting equation (8.24) into equation (8.23) yields

D

Dt

∫

sys

φρ dV =
d

dt

∫

cv

φ ρ dV +
∫

cv

∇ · (ρφUUU) dV (8.25)

Since the volume of the control volume remains independent of the time, the derivative
can enter into the integral and thus combining the two integrals on the RHS results in

D

Dt

∫

sys

φρ dV =
∫

cv

(
d (φρ)

dt
+∇ · (ρφUUU)

)
dV (8.26)

The definition of equation (8.21) LHS can be changed to simply the derivative
of Φ. The integral is carried over arbitrary system. For an infinitesimal control volume
the change is

D Φ
Dt

∼=
(

d (φ ρ)
dt

+∇ · (ρφUUU)
) dV︷ ︸︸ ︷

dx dy dz (8.27)

8.3.2 Examples of Several Quantities

8.3.2.1 The General Mass Time Derivative

Using φ = 1 is the same as dealing with the mass conservation. In that case D Φ
Dt = D ρ

Dt
which is equal to zero as

-
-




d




φ︷︸︸︷
1 ρ




dt
+∇ ·


ρ

φ︷︸︸︷
1 UUU







dV︷ ︸︸ ︷
dx dy dz = 0 (8.28)

8These integrals are related to RTT. Basically the divergence theorem relates the flow out (or) in
and the sum of the all the changes inside the control volume.



244 CHAPTER 8. DIFFERENTIAL ANALYSIS

Using equation (8.21) leads to

D ρ

Dt
= 0 −→ ∂ ρ

∂t
+∇ · (ρUUU) = 0 (8.29)

Equation (8.29) can be rearranged as

∂ ρ

∂t
+ UUU ∇ · ρ + ρ∇ ·UUU = 0 (8.30)

Equation (8.30) can be further rearranged so derivative of the density is equal the
divergence of velocity as

1
ρ

(substantial derivative︷ ︸︸ ︷
∂ ρ

∂t
+ UUU ∇ · ρ

)
= −∇ ·UUU (8.31)

Equation (8.31) relates the density rate of change or the volumetric change to the
velocity divergence of the flow field. The term in the bracket LHS is referred in the
literature as substantial derivative. The substantial derivative represents the change
rate of the density at a point which moves with the fluid.

Acceleration Direct Derivations

One of the important points is to find the fluid particles acceleration. A fluid
particle velocity is a function of the location and time. Therefore, it can be written that

UUU(x, y, z, t) = Ux(x, y, x, t) î + Uy(x, y, z, t) ĵ + Uz(x, y, z, t) k̂ (8.32)

Therefor the acceleration will be

DUUU

Dt
=

d Ux

dt
î +

dUy

dt
ĵ +

dUz

dt
k̂ (8.33)

The velocity components are a function of four variables, (x, y, z, and t), and hence

D Ux

Dt
=

∂ Ux

∂t

=1︷︸︸︷
d t

d t
+

∂ Ux

∂x

Ux︷︸︸︷
d x

d t
+

∂ Ux

∂y

Uy︷︸︸︷
d y

d t
+

∂ Ux

∂z

Uz︷︸︸︷
d z

d t
(8.34)

The acceleration in the x can be written as

D Ux

Dt
=

∂ Ux

∂t
+ Ux

∂ Ux

∂x
+ Uy

∂ Ux

∂y
+ Uz

∂ Ux

∂z
=

∂ Ux

∂t
+ (UUU · ∇) Ux (8.35)

The same can be developed to the other two coordinates which can be combined (in
a vector form) as

dUUU

dt
=

∂ UUU

∂t
+ (UUU · ∇) UUU (8.36)
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or in a more explicit form as

dUUU

dt
=

local
acceleration

︷︸︸︷
∂ UUU

∂t
+

convective
acceleration

︷ ︸︸ ︷
UUU

∂ UUU

∂x
+ UUU

∂ UUU

∂y
+ UUU

∂ UUU

∂z
(8.37)

The time derivative referred in the literature as the local acceleration which vanishes
when the flow is in a steady state. While the flow is in a steady state there is only
convecive acceleration of the flow. The flow in a nozzle is an example to flow at
steady state but yet has acceleration which flow with a very low velocity can achieve a
supersonic flow.

8.4 Momentum Conservation
The relationship among the shear stress various components have to be established.
The stress is a relationship between the force and area it is acting on or force divided
by the area (division of vector by a vector). This division creates a tensor which the
physical meaning will be explained here (the mathematical explanation can be found in
the mathematical appendix of the book). The area has a direction or orientation which
control the results of this division. So it can be written that

τ = f(FFF,AAA) (8.38)

It was shown that in a static case (or in better words, when the shear stresses are
absent) it was written

τ = −Pn̂ (8.39)

It also was shown that the pressure has to be continuous. However, these stresses
that act on every point and have three components on every surface and depend on
the surface orientation. A common approach is to collect the stress in a “standard”
orientation and then if needed the stresses can be reorientated to a new direction. The
transformation is available because the “standard” surface can be transformed using
trigonometrical functions. In Cartesian coordinates on surface in the x direction the
stresses are

τ (x) = τxx τxy τxz (8.40)

where τxx is the stress acting on surface x in the x direction, and τxy is the stress
acting on surface x in the y direction, similarly for τxz. The notation τ (xi) is used
to denote the stresses on xi surface. It can be noticed that no mathematical symbols
are written between the components. The reason for this omission is that there is no
physical meaning for it9. Similar “vectors” exist for the y and z coordinates which can

9It can be argue that there is physical meaning that does not significant to the understanding of
the subject.
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be written in a matrix form

τ =




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz


 (8.41)

X

Y
Z

τnn

τ
nℓ

τnℵ

τ
y
y

τyz

τ
x
yτxx

τyx

τxz

Fig. -8.5. Stress diagram on a tetrahedron
shape.

Suppose that a straight angle tetra-
hedron is under stress as shown in Figure
8.5. The forces balance in the x direction
excluding the slanted surface is

Fx = −τyxδAy − τxxδAx − τzxδAz

(8.42)

where δAy is the surface area of the tetra-
hedron in the y direction, δAx is the sur-
face area of the tetrahedron in the x di-
rection and δAz is the surface area of the
tetrahedron in the z direction. The oppos-
ing forces which acting on the slanted surface in the x direction are

Fx = δAn

(
τnn n̂ · î− τn`

̂̀· î− τnℵℵ̂ · î
)

(8.43)

Where here ℵ̂, ̂̀ and n̂ are the local unit coordinates on n surface the same can be
written in the x, and z directions. The transformation matrix is then




Fx

Fy

Fx


 =




n̂ · î ̂̀· î ℵ̂ · î
n̂ · ĵ ̂̀· ĵ ℵ̂ · ĵ
n̂ · k̂ ̂̀· k̂ ℵ̂ · k̂


 δAn (8.44)

When the tetrahedron is shrunk to a point relationship of the stress on the two sides
can be expended by Taylor series and keeping the first derivative. If the first derivative
is neglected (tetrahedron is without acceleration) the two sides are related as

−τyxδAy − τxxδAx − τzxδAz = δAn

(
τnn n̂ · î− τn`

̂̀· î− τnℵℵ̂ · î
)

(8.45)

The same can be done for y and z directions. The areas are related to each other
through angles. These relationships provide the transformation for the different orienta-
tions which depends only angles of the orientations. This matrix is referred to as stress
tensor and as it can be observed has nine terms.

The Symmetry of the Stress Tensor

A small liquid cubical has three possible rotation axes. Here only one will be dis-
cussed the same conclustions can be drown on the other direction. The cubical rotation
can involve two parts: one distortion and one rotation10. A finite angular distortion of

10For infinitesimal change the lines can be approximated as straight.
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infinitesimal cube requires an infinite shear which required for infinite moment. Hence,
the rotation of the infinitesimal fluid cube can be viewed as it is done almost as a solid
body rotation. Balance of momentum around the z direction shown in Figure 8.6 is

Mz = Izz
dθ

dt
(8.46)

Where Mz is the cubic moment around the cubic center and Izz
11 is the moment of

inertia around that center. The momentum can be assested by the shear stresses which
act on it. The shear stress at point x is τxy. However, the shear stress at point x + dx
is

τxy|x+dx = τxy +
dτxy

dx
dx (8.47)

τxy

x

y τyx

τxy

τyx

τxx

τxx

τyy

τyy

dy

dx

Fig. -8.6. Diagram to analysis the shear stress
tensor.

The same can be said for τyx for y
direction. The clarity of this analysis can
be improved if additional terms are taken,
yet it turn out that the results will be
the same. The normal body force (grav-
ity) acts through the cubic center of grav-
ity. The moment that creats by this ac-
tion can be neglected (the changes are in-
significant). However, for cases that body
force, such as the magnetic fields, can cre-
ate torque. For simplicity and generality,
it is assumed that the external body force
exerts a torque GT per unit volume at the
specific location. The body force can exert
torque is due to the fact that the body force is not uniform and hence not act through
the mass center.

Advance material can be skipped

The shear stress in the surface direction potentially can result in the torque due
to the change in the shear stress12. For example, τxx at x can be expended as a linear
function

τxx = τxx|y +
dτxx

dy

∣∣∣∣
y

η (8.48)

where η is the local coordinate in the y direction stating at y and “mostly used”
between y < η < y + dy.

11See for the derivations in Example 3.5 for moment of inertia.
12This point bother this author in the completeness of the proof. It can be ignored, but provided to

those who wonder why body forces can contribute to the torque while pressure, even though varied,
does not. This point is for self convincing since it deals with a “strange” and problematic “animals”
of integral of infinitesimal length.
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x

y

τyy

τyy

dy
dx

η

Fig. -8.7. The shear stress creating torque.

The moment that results from this
shear force (clockwise positive) is

∫ y+dy

y

τxx(η)
(

η − dy

2

)
dη (8.49)

Substituting (8.48) into (8.49) results

∫ y+dy

y

(
τxx|y +

dτxx

dy

∣∣∣∣
y

η

) (
η − dy

2

)
dη

(8.50)

The integral of (8.50) isn’t zero (non sym-
metrical function around the center of in-
tegration). The reason that this term is
neglected because on the other face of the cubic contributes an identical term but in
the opposing direction (see Figure 8.6).

End Advance material

The net torque in the z-direction around the particle’s center would then be

(τyx) dx dy dz
2 −

(
τyx + ∂τxy

∂x

)
dx dy dz

2 + (τxy) dx dy dz
2 −

(
τxy + ∂τxy

∂x

)
dx dy dz

2 =

Izz︷ ︸︸ ︷
ρ dx dy dz

(
(dx)2 + (dy)2

)
dθ
dt

(8.51)

The actual components which contribute to the moment are

GT + τxy − τxy +

∼=0︷ ︸︸ ︷
∂ (τyx − τxy)

∂y
= ρ

(
(dx)2 + (dy)2

)
︸ ︷︷ ︸

=0

12
dθ

dt
(8.52)

which means since that dx −→ 0 and dy −→ 0 that

GT + τxy = τyx (8.53)

This analysis can be done on the other two directions and hence the general conclusion
is that

GT + τij = τji (8.54)

where i is one of x, y, z and the j is any of the other x, y, z13. For the case of GT = 0
the stress tensor becomes symmetrical. The gravity is a body force that is considered
in many kind of calculations and this force cause a change in symmetry of the stress

13The index notation is not the main mode of presentation in this book. However, since Potto
Project books are used extensively and numerous people asked to include this notation it was added. It
is believed that this notation should and can be used only after the physical meaning was “digested.”
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tensor. However, this change, for almost all practical purposes, can be neglected14. The
magnetic body forces on the other hand are significant and have to be included in the
calculations. If the body forces effect is neglected or do not exist in the problem then
regardless the coordinate system orientation

τij = τji (i 6= j) (8.55)

8.5 Derivations of the Momentum Equation

x

τzz +
∂τzz

∂z
dz

(

τy
y
+

∂τ
y
y

∂y

)

dy

(

τxx +
∂τxx

∂x
dx

)

τzz

τxx

τyy

Z

y

(

τxy +
∂τxy

∂x
dx

)

τxy

(

τxz +
∂τxz

∂x
dx

)

τxz

Fig. -8.8. The shear stress at different surfaces. All shear stress shown in surface x and x+dx.

Previously it was shown that equation (6.11) is equivalent to Newton second law
for fluids. Equation (6.11) is also applicable for the small infinitesimal cubic. One
direction of the vector equation will be derived for x Cartesian coordinate (see Figure
8.8). Later Newton second law will be used and generalized. For surface forces that
acting on the cubic are surface forces, gravitation forces (body forces), and internal
forces. The body force that acting on infinitesimal cubic in x direction is

î · fffB = fffBx dx dy dz (8.56)

The dot product yields a force in the directing of x. The surface forces in x direction
on the x surface on are

fxx = τxx|x+dx ×
dAx︷ ︸︸ ︷

dy dz− τxx|x ×
dAx︷ ︸︸ ︷

dy dz (8.57)

14In the Dimensional Analysis a discussion about this effect hopefully will be presented.
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The surface forces in x direction on the y surface on are

fxy = τyx|y+dy ×
dAy︷ ︸︸ ︷

dx dz− τyx|y ×
dAy︷ ︸︸ ︷

dx dz (8.58)

The same can be written for the z direction. The shear stresses can be expanded into
Taylor series as

τix|i+di = τix +
∂ (τix)

∂i

∣∣∣∣
i

di + · · · (8.59)

where i in this case is x, y, or z. Hence, the total net surface force results from the
shear stress in the x direction is

fx =
(

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)
dx dy dz (8.60)

after rearrangement equations such as (8.57) and (8.58) transformed into

internal forces︷ ︸︸ ︷
DUx

Dt
ρ½½dx¡¡dy½½dz =

surface forces︷ ︸︸ ︷(
∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)
½½dx¡¡dy½½dz +

body forces︷ ︸︸ ︷
fGx ρ½½dx¡¡dy½½dz (8.61)

equivalant equation (8.61) for y coordinate is

ρ
DUy

Dt
=

(
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z

)
+ ρ fGy (8.62)

The same can be obtained for the z component

ρ
DUz

Dt
=

(
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z

)
+ ρ fGz (8.63)

Advance material can be skipped

Generally the component momentum equation is as

ρ
DUi

Dt
=

(
∂τii

∂i
+

∂τji

∂j
+

∂τki

∂j

)
+ ρ fGi (8.64)

End Advance material

Where i is the balance direction and j and k are two other coordinates. Equation
(8.64) can be written in a vector form which combined all three components into one
equation. The advantage of the vector from allows the usage of the different coordinates.
The vector form is

ρ
DUUU

Dt
= ∇ · τ (i) + ρfGfGfG (8.65)
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where here

τ (i) = τixî + τiy ĵ + τiz k̂

is part of the shear stress tensor and i can be any of the x, y, or z.
Or in index (Einstein) notation as

ρ
DUi

Dt
=

∂τji

∂xi
+ ρ fGi (8.66)

End Advance material

x

y



Uy +
∂Uy
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 dtUydt



Uy +
∂Uy

∂y
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Uxdt

@ t

@ t + dt

= + +

A A

B

C

D

x’y’ 45◦

Fig. -8.9. Control volume at t and t + dt un-
der continuous angle deformation. Notice the
three combinations of the deformation shown
by purple color relative to blue color.

Equations (8.61) or (8.62) or (8.63)
requires that the stress tensor be defined
in term of the velocity/deformaiton. The
relationship between the stress tensor and
deformation depends on the classes of ma-
terials the stresses acts on. Additionally,
the deformation can be viewed as a func-
tion of the velocity field. As engineers
do in general, the simplest model is as-
sumed which referred as the solid contin-
uum model. In this model the relation-
ship bewtween the (shear) stresses and
rate of strains are assumed to be linear. In
solid material, the shear stress yields a fix
amount of deformation. In contrast, when
applying the shear stress in fluids, the re-
sult is a continuous deformation. Further-
more, reduction of the shear stress does
not return the material to its original state
as in solids. The similarity to solids the increase shear stress in fluids yields larger defor-
mations. Thus this “solid” model is a linear relationship with three main assumptions:

a. There is no preference in the orientation (also call isentropic fluid),

b. there is no left over stresses (In other words when the “no shear stress” situation
exist the rate of deformation or strain is zero), and

c. a linear relationship exist between the shear stress and the rate of shear strain.

At time t, the control volume is at a square shape and at a location as depicted
in Figure 8.9 (by the blue color). At time t + dt the control volume undergoes three
different changes. The control volume moves to a new location, rotates and changes
the shape (the purpule color in in Figure 8.9). The translational movement is referred
to a movement of body without change of the body and without rotation. The rotation
is the second movement that referred to a change in of the relative orientation inside
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the control volume. The third change is the misconfiguration or control volume (defor-
mation). The deformation of the control volume has several components (see the top
of Figure 8.9). The shear stress is related to the change in angle of the control volume
lower left corner. The angle between x to the new location of the control volume can
be approximate for a small angle as

dγx

dt
= tan

(
Uy + dUy

dx dx− Uy

dx

)
= tan

(
dUy

dx

)
∼= dUy

dx
(8.67)

The total angle deformation (two sides x and y) is

Dγxy

Dt
=

dUy

dx
+

dUx

dy
(8.68)

In these derivatives, the symmetry
dUy

dx 6= dUx

dy was not assumed and or required because
rotation of the control volume. However, under isentropic material it is assumed that
all the shear stresses contribute equally. For the assumption of a linear fluid15.

τxy = µ
Dγxy

Dt
= µ

(
dUy

dx
+

dUx

dy

)
(8.69)

x

y

τx’x’

x’y’ 45◦

τx’y’

τxx

τyx

τxy

τyy

A

B

C

D

Fig. -8.10. Shear stress at
two coordinates in 45◦ ori-
entations.

where, µ is the “normal” or “ordinary” viscosity coefficient
which relates the linear coefficient of proportionality and
shear stress. This deformation angle coefficient is assumed
to be a property of the fluid. In a similar fashion it can be
written to other directions for x z as

τxz = µ
Dγxz

Dt
= µ

(
dUz

dx
+

dUx

dz

)
(8.70)

and for the directions of y z as

τyz = µ
Dγyz

Dt
= µ

(
dUz

dy
+

dUy

dz

)
(8.71)

Note that the viscosity coefficient (the linear coefficient16)
is assumed to be the same regardless of the direction. This assumption is referred as
isotropic viscosity. It can be noticed at this stage, the relationship for the two of stress
tensor parts was established. The only missing thing, at this stage, is the diagonal
component which to be dealt below.

Advance material can be skipped

In general equation (8.69) can be written as

τij = µ
Dγij

Dt
= µ

(
dUj

di
+

dUi

dj

)
(8.72)

15While not marked as important equation this equation is the source of the derivation.
16The first assumption was mentioned above.
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where i 6= j and i = x or y or z.

End Advance material

Normal Stress

The normal stress, τii (where i is either ,x, y, z) appears in the shear matrix
diagonal. To find the main (or the diagonal) stress the coordinates are rotate by 45◦.
The diagonal lines (line BC and line AD in Figure 8.9) in the control volume move
to the new locations. In addition, the sides AB and AC rotate in unequal amount
which make one diagonal line longer and one diagonal line shorter. The normal shear
stress relates to the change in the diagonal line length change. This relationship can be
obtained by changing the coordinates orientation as depicted by Figure 8.10. The dx is
constructed so it equals to dy. The forces acting in the direction of x’ on the ellement
are combination of several terms. For example, on the “x” surface (lower surface) and
the “y” (left) surface, the shear stresses are acting in this direction. It can be noticed
that “dx’” surface is

√
2 times larger than dx and dy surfaces. The force balance in the

x’ is

Ax︷︸︸︷
dy τxx

cos θx︷︸︸︷
1√
2

+

Ay︷︸︸︷
dx τyy

cos θy︷︸︸︷
1√
2

+

Ay︷︸︸︷
dx τyx

cos θy︷︸︸︷
1√
2

+

Ax︷︸︸︷
dy τxy

cos θy︷︸︸︷
1√
2

=

Ax’︷ ︸︸ ︷
dx
√

2 τx’x’ (8.73)

dividing by dx and after some rearrangements utilizing the identity τxy = τyx results
in

τxx + τyy

2
+ τyx = τx’x’ (8.74)

Setting the similar analysis in the y’ results in

τxx + τyy

2
− τyx = τy’y’ (8.75)

Subtracting (8.75) from (8.74) results in

2 τyx = τx’x’ − τy’y’ (8.76)

or dividing by 2 equation (8.76) becomes

τyx =
1
2

(τx’x’ − τy’y’) (8.77)

Equation (8.76) relates the difference between the normal shear stress and the
normal shear stresses in x’, y’ coordinates) and the angular strain rate in the regular (x, y
coordinates). The linear deformations in the x’ and y’ directions which is rotated 45◦

relative to the x and y axes can be expressed in both coordinates system. The angular
strain rate in the (x, y) is frame related to the strain rates in the (x’, y’) frame. Figure
8.11(a) depicts the deformations of the triangular particles between time t and t + dt.
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x

y x’y’ 45
◦

a
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d

(a) Deformations of the isosceles
triangular.

x

y

x’y’

45
◦

b

c+b

d+aa

(b) Deformation of the straight angle
triangle.

Fig. -8.11. Different triangles deformation for the calculations of the normal stress.

The small deformations a , b, c, and d in the Figure are related to the incremental linear
strains. The rate of strain in the x direction is

dεx =
c

dx
(8.78)

The rate of the strain in y direction is

dεy =
a

dx
(8.79)

The total change in the deformation angle is related to tan θ, in both sides (d/dx+b/dy)
which in turn is related to combination of the two sides angles. The linear angular
deformation in xy direction is

dγxy =
b + d

dx
(8.80)

Here, dεx is the linear strain (increase in length divided by length) of the particle
in the x direction, and dεy is its linear strain in the y-direction. The linear strain in the x′

direction can be computed by observing Figure 8.11(b). The hypotenuse of the triangle
is oriented in the x’ direction (again observe Figure 8.11(b)). The original length of the

hypotenuse
√

2dx. The change in the hypotenuse length is
√

(c + b)2 + (a + d)2. It
can be approximated that the change is about 45◦ because changes are infinitesimally
small. Thus, cos 45◦ or sin 45◦ times the change contribute as first approximation to
change. Hence, the ratio strain in the x’ direction is

dεx’ =

√
(c + b)2 + (a + d)2

√
2dx

'
(c + b)√

2
+

(c + b)√
2

+

∼0︷ ︸︸ ︷
f (dx’)

√
2dx

(8.81)
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Equation (8.81) can be interpreted as (using equations (8.78), (8.79), and (8.80)) as

dεx’ =
1
2

(
a + b + c + d

dx

)
=

1
2

(dεy + dεy + dγxy) (8.82)

In the same fashion, the strain in y’ coordinate can be interpreted to be

dεy’ =
1
2

(dεy + dεy − dγxy) (8.83)

Notice the negative sign before dγxy. Combining equation (8.82) with equation (8.83)
results in

dεx’ − dεy’ = dγxy (8.84)

Equation (8.84) describing in Lagrangian coordinates a single particle. Changing it to
the Eulerian coordinates transforms equation (8.84) into

Dεx’

Dt
− Dεy’

Dt
=

Dγxy

Dt
(8.85)

From (8.69) it can be observed that the right hand side of equation (8.85) can be
replaced by τxy/µ to read

Dεx’

Dt
− Dεy’

Dt
=

τxy

µ
(8.86)

From equation (8.76) τxy be substituted and equation (8.86) can be continued
and replaced as

Dεx’

Dt
− Dεy’

Dt
=

1
2 µ

(τx’x’ − τy’y’) (8.87)

x’

y’

Uy’dt





Ux’ +
∂Ux ’

∂x ’

dx ’





 dt








Uy’ +

∂Uy ’

∂y ’

dy ’








dt

Fig. -8.12. Linear strain of the element pur-
ple denotes t and blue is for t + dt. Dashed
squares denotes the movement without the lin-
ear change.

Figure 8.12 depicts the approximate
linear deformation of the element. The lin-
ear deformation is the difference between
the two sides as

Dεx’

Dt
=

∂Ux’

∂x’
(8.88)

The same way it can written for the y’
coordinate.

Dεy’

Dt
=

∂Uy’

∂y’
(8.89)
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Equation (8.88) can be written in the y’ and is similar by substituting the coordinates.
The rate of strain relations can be substituted by the velocity and equations (8.88) and
(8.89) changes into

τx’x’ − τy’y’ = 2µ

(
∂Ux’

∂x’
− ∂Uy’

∂y’

)
(8.90)

Similar two equations can be obtained in the other two plans. For example in y’–z’
plan one can obtained

τx’x’ − τz’z’ = 2µ

(
∂Ux’

∂x’
− ∂Uz’

∂z’

)
(8.91)

Adding equations (8.90) and (8.91) results in

2︷ ︸︸ ︷
(3− 1) τx’x’ − τy’y’ − τz’z’ =

4︷ ︸︸ ︷
(6− 2) µ

∂Ux’

∂x’
− 2 µ

(
∂Uy’

∂y’
+

∂Uz’

∂z’

)
(8.92)

rearranging equation (8.92) transforms it into

3 τx’x’ = τx’x’ + τy’y’ + τz’z’ + 6 µ
∂Ux’

∂x’
− 2 µ

(
∂Ux’

∂x’
+

∂Uy’

∂y’
+

∂Uz’

∂z’

)
(8.93)

Dividing the restuls by 3 so that one can obtained the following

τx’x’ =

“mechanical” pressure︷ ︸︸ ︷
τx’x’ + τy’y’ + τz’z’

3
+2µ

∂Ux’

∂x’
− 2

3
µ

(
∂Ux’

∂x’
+

∂Uy’

∂y’
+

∂Uz’

∂z’

)
(8.94)

The “mechanical” pressure, Pm, is defined as the (negative) average value of pressure
in directions of x’–y’–z’. This pressure is a true scalar value of the flow field since
the propriety is averaged or almost17 invariant to the coordinate transformation. In
situations where the main diagonal terms of the stress tensor are not the same in all
directions (in some viscous flows) this property can be served as a measure of the local
normal stress. The mechanical pressure can be defined as averaging of the normal stress
acting on a infinitesimal sphere. It can be shown that this two definitions are “identical”
in the limits18. With this definition and noticing that the coordinate system x’–y’ has no
special significance and hence equation (8.94) must be valid in any coordinate system
thus equation (8.94) can be written as

τxx = −Pm + 2 µ
∂Ux

∂x
+

2
3
µ∇ ·UUU (8.95)

Again where Pm is the mechanical pressure and is defined as

Pm = −τxx + τyy + τzz

3

Mechanical Pressure

(8.96)

17It identical only in the limits to the mechanical measurements.
18G. K. Batchelor, An Introduction to Fluid Mechanics, Cambridge University Press, 1967, p.141.
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It can be observed that the non main (diagonal) terms of the stress tensor are represented
by an equation like (8.72). Commonality engineers like to combined the two difference
expressions into one as

τxy = −
(

Pm +
2
3
µ∇ ·UUU

) =0︷︸︸︷
δxy +µ

(
∂Ux

∂y
+

∂Uy

∂x

)
(8.97)

or

τxx = −
(

Pm +
2
3
µ∇ ·UUU

) =1︷︸︸︷
δxy +µ

(
∂Ux

∂x
+

∂Uy

∂y

)
(8.98)

Advance material can be skipped

or index notation

τij = −
(

Pm +
2
3
µ∇ ·UUU

)
δij + µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(8.99)

End Advance material

where δij is the Kronecker delta what is δij = 1 when i = j and δij = 0 otherwise. While
this expression has the advantage of compact writing, it does not add any additional
information. This expression suggests a new definition of the thermodynamical pressure
is

P = Pm +
2
3
µ∇ ·UUU

Thermodynamic Pressure

(8.100)

Summary of The Stress Tensor

The above derivations were provided as a long mathematical explanation19. To
reduced one unknown (the shear stress) equation (8.61) the relationship between the
stress tensor and the velocity were to be established. First, connection between τxy and
the deformation was built. Then the association between normal stress and perpendicu-
lar stress was constructed. Using the coordinates transformation, this association was
established. The linkage between the stress in the rotated coordinates to the deforma-
tion was established.

Second Viscosity Coefficient

The coefficient 2/3µ is experimental and relates to viscosity. However, if the
derivations before were to include additional terms, an additional correction will be
needed. This correction results in

P = Pm + λ∇ ·UUU (8.101)

19Since the publishing the version 0.2.9.0 several people ask this author to summarize conceptually
the issues. With God help, it will be provide before version 0.3.1
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The value of λ is obtained experimentally. This coefficient is referred in the literature
by several terms such as the “expansion viscosity” “second coefficient of viscosity” and
“bulk viscosity.” Here the term bulk viscosity will be adapted. The dimension of the
bulk viscosity, λ, is similar to the viscosity µ.According to second law of thermodynamic
derivations (not shown here and are under construction) demonstrate that λ must be
positive. The thermodynamic pressure always tends to follow the mechanical pressure
during a change. The expansion rate of change and the fluid molecular structure through
λ control the difference. Equation (8.101) can be written in terms of the thermodynamic
pressure P , as

τij = −
[
P +

(
2
3
µ− λ

)
∇ ·UUU

]
δij + µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(8.102)

The significance of the difference between the thermodynamic pressure and the
mechanical pressure associated with fluid dilation which connected by ∇ · UUU . The
physical meaning of ∇·UUU represents the relative volume rate of change. For simple gas
(dilute monatomic gases) it can be shown that λ vanishes. In material such as water,
λ is large (3 times µ) but the net effect is small because in that cases ∇ · UUU −→ 0.
For complex liquids this coefficient, λ, can be over 100 times larger than µ. Clearly for
incompressible flow, this coefficient or the whole effect is vanished20. In most cases,
the total effect of the dilation on the flow is very small. Only in micro fluids and small
and molecular scale such as in shock waves this effect has some significance. In fact
this effect is so insignificant that there is difficulty in to construct experiments so this
effect can be measured. Thus, neglecting this effect results in

τij = −Pδij + µ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(8.103)

To explain equation (8.103), it can be written for spesific coordinates. For example,
for the τxx it can be written that

τxx = −P + 2
∂Ux

∂x
(8.104)

and the y coordinate the equation is

τyy = −P + 2
∂Uy

∂y
(8.105)

however the mix stress, τxy, is

τxy = τyx =
(

∂Uy

∂x
+

∂Ux

∂y

)
(8.106)

20The reason that the effect vanish is because ∇ ·UUU = 0.
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For the total effect, substitute equation (8.102) into equation (8.61) which results
in

ρ

(
DUx

Dt

)
= −∂

(
P +

(
2
3µ− λ

)∇ ·UUU)

∂x
+ µ

(
∂2Ux

∂x2
+

∂2Ux

∂y2
+

∂2Ux

∂z2

)
+fffBx

(8.107)

or in a vector form as

ρ
DUUU

Dt
= −∇P +

(
1
3
µ + λ

)
∇ (∇ ·UUU) + µ∇2UUU + fffB

N-S in stationary Coordinates

(8.108)

For in index form as

ρ
D Ui

Dt
= − ∂

∂xi

(
P +

(
2
3
µ− λ

)
∇ ·UUU

)
+

∂

∂xj

(
µ

(
∂Ui

∂xj
+

∂Uj

∂xi

))
+ fffBi

(8.109)

For incompressible flow the term ∇ ·UUU vanishes, thus equation (8.108) is reduced to

ρ
DUUU

Dt
= −∇P + µ∇2UUU + fffB

Momentum for Incompressible Flow

(8.110)

or in the index notation it is written

ρ
D Ui

Dt
= − ∂P

∂xi
+ µ

∂2UUU

∂xi∂xj
+ fffBi (8.111)

The momentum equation in Cartesian coordinate can be written explicitly for x coor-
dinate as

ρ

(
∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
+ Uz

∂Ux

∂z

)
=

−∂P

∂x
+ µ

(
∂2Ux

∂x2
+

∂2Ux

∂y2
+

∂2Ux

∂z2

)
+ ρgx

(8.112)

Where gx is the the body force in the x direction (̂i · ggg). In the y coordinate the
momentum equation is

ρ

(
∂Uy

∂t
+ Ux

∂Uy

∂x
+ Uy

∂Uy

∂y
+ Uz

∂Uy

∂z

)
=

−∂P

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
+ ρgy

(8.113)
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in z coordinate the momentum equation is

ρ

(
∂Uz

∂t
+ Ux

∂Uz

∂x
+ Uy

∂Uz

∂y
+ Uz

∂Uz

∂z

)
=

−∂P

∂z
+ µ

(
∂2Uz

∂x2
+

∂2Uz

∂y2
+

∂2Uz

∂z2

)
+ ρgz

(8.114)

8.6 Boundary Conditions and Driving Forces

8.6.1 Boundary Conditions Categories

The governing equations that were developed earlier requires some boundary conditions
and initial conditions. These conditions described physical situations that are believed
or should exist or approximated. These conditions can be categorized by the velocity,
pressure, or in more general terms as the shear stress conditions (mostly at the interface).
For this discussion, the shear tensor will be separated into two categories, pressure (at
the interface direction) and shear stress (perpendicular to the area). A common velocity
condition is that the liquid has the same value as the solid interface velocity. In the
literature, this condition is referred as the “no slip” condition. The solid surface is rough
thus the liquid participles (or molecules) are slowed to be at the solid surface velocity.
This boundary condition was experimentally observed under many conditions yet it is not
universal true. The slip condition (as oppose to “no slip” condition) exist in situations
where the scale is very small and the velocity is relatively very small. The slip condition
is dealing with a difference in the velocity between the solid (or other material) and the
fluid media. The difference between the small scale and the large scale is that the slip
can be neglected in the large scale while the slip cannot be neglected in the small scale.
In another view, the difference in the velocities vanishes as the scale increases.

x
y

n̂

f(x)

̂
t

flow 

direction

Fig. -8.13. 1–Dimensional free surface describing bnnn and
bttt.

Another condition which affects
whether the slip condition ex-
ist is how rapidly of the velocity
change. The slip condition can-
not be ignored in some regions,
when the flow is with a strong
velocity fluctuations. Mathemat-
ically the “no slip” condition is
written as

t̂ · (UUUfluid −UUU boundary) = 0
(8.115)

where n̂ is referred to the area direction (perpendicular to the area see Figure 8.13).
While this condition (8.115) is given in a vector form, it is more common to write this
condition as a given velocity at a certain point such as

U(`) = U` (8.116)
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Note, the “no slip” condition is applicable to the ideal fluid (“inviscid flows”) because
this kind of flow normally deals with large scales. The ”slip” condition is written in
similar fashion to equation (8.115) as

t̂ · (UUUfluid −UUU boundary) = f(Q, scale, etc) (8.117)

As oppose to a given velocity at particular point, a requirement on the accel-
eration (velocity) can be given in unknown position. The condition (8.115) can be
mathematically represented in another way for free surface conditions. To make sure
that all the material is accounted for in the control volume (does not cross the free sur-
face), the relative perpendicular velocity at the interface must be zero. The location of
the (free) moving boundary can be given as f(r̂rr, t) = 0 as the equation which describes
the bounding surface. The perpendicular relative velocity at the surface must be zero
and therefore

Df

Dt
= 0 on the surface f(r̂rr, t) = 0 (8.118)

This condition is called the kinematic boundary condition. For example, the free surface
in the two dimensional case is represented as f(t, x, y). The condition becomes as

0 =
∂f

∂t
+ Ux

∂f

∂x
+ Uy

∂f

∂y
(8.119)

The solution of this condition, sometime, is extremely hard to handle because the
location isn’t given but the derivative given on unknown location. In this book, this
condition will not be discussed (at least not plane to be written).

The free surface is a special case of moving surfaces where the surface between
two distinct fluids. In reality the interface between these two fluids is not a sharp
transition but only approximation (see for the surface theory). There are situations
where the transition should be analyzed as a continuous transition between two phases.
In other cases, the transition is idealized an almost jump (a few molecules thickness).
Furthermore, there are situations where the fluid (above one of the sides) should be
considered as weightless material. In these cases the assumptions are that the transition
occurs in a sharp line, and the density has a jump while the shear stress are continuous
(in some cases continuously approach zero value). While a jump in density does not
break any physical laws (at least those present in the solution), the jump in a shear
stress (without a jump in density) does break a physical law. A jump in the shear
stress creates infinite force on the adjoin thin layer. Off course, this condition cannot
be tolerated since infinite velocity (acceleration) is impossible. The jump in shear stress
can appear when the density has a jump in density. The jump in the density (between
the two fluids) creates a surface tension which offset the jump in the shear stress. This
condition is expressed mathematically by equating the shear stress difference to the
forces results due to the surface tension. The shear stress difference is

∆τ (n) = 0 = ∆τ (n)
upper
surface

−∆τ (n)
lower
surface

(8.120)
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where the index (n) indicate that shear stress are normal (in the surface area). If
the surface is straight there is no jump in the shear stress. The condition with curved
surface are out the scope of this book yet mathematically the condition is given as
without explanation as

n̂nn · τ (n) = σ

(
1

R1
+

1
R2

)
(8.121)

t̂tt · τ (t) = −t̂tt · ∇σ (8.122)

where n̂nn is the unit normal and t̂tt is a unit tangent to the surface (notice that direction
pointed out of the “center” see Figure 8.13) and R1 and R2 are principal radii. One
of results of the free surface condition (or in general, the moving surface condition) is
that integration constant is unknown). In same instances, this constant is determined
from the volume conservation. In index notation equation (8.121) is written21 as

τ
(1)
ij nj + σ ni

(
1

R1
+

1
R2

)
= τ

(2)
ij nj (8.123)

where 1 is the upper surface and 2 is the lower surface. For example in one dimensional22

n̂nn =
(−f ′(x), 1)√
1 + (f ′(x))2

t̂tt =
(1, f ′(x))√
1 + (f ′(x))2

(8.124)

the unit vector is given as two vectors in x and y and the radius is given by equation
(1.57). The equation is given by

∂f

∂t
+ Ux

∂f

∂x
= Uy (8.125)

The Pressure Condition

The second condition that commonality prescribed at the interface is the static
pressure at a specific location. The static pressure is measured perpendicular to the
flow direction. The last condition is similar to the pressure condition of prescribed shear
stress or a relationship to it. In this category include the boundary conditions with issues
of surface tension which were discussed earlier. It can be noticed that the boundary
conditions that involve the surface tension are of the kind where the condition is given
on boundary but no at a specific location.

21There is no additional benefit in this writing, it just for completeness and can be ignored for most
purposes.

22A one example of a reference not in particularly important or significant just a random example.
Jean, M. Free surface of the steady flow of a Newtonian fluid in a finite channel. Arch. Rational Mech.
Anal. 74 (1980), no. 3, 197–217.
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Gravity as Driving Force

The body forces, in general and gravity in a particular, are the condition that
given on the flow beside the velocity, shear stress (including the surface tension) and
the pressure. The gravity is a common body force which is considered in many fluid
mechanics problems. The gravity can be considered as a constant force in most cases
(see for dimensional analysis for the reasons).

Fig. -8.14. Kerosene lamp.

Shear Stress and Surface Tension as Driving Force

If the fluid was solid material, pulling the side
will pull all the material. In fluid (mostly liquid)
shear stress pulling side (surface) will have limited
effect and yet sometime is significant and more
rarely dominate. Consider, for example, the case
shown in Figure 8.14. The shear stress carry the
material as if part of the material was a solid mate-
rial. For example, in the kerosene lamp the burning
occurs at the surface of the lamp top and the liquid
is at the bottom. The liquid does not move up due
the gravity (actually it is against the gravity) but because the surface tension.

µ
∂U

∂r
=

∂σ

∂h

U(ri) = 0

} temperature

gradent

} mix zone

} constant 

T

Fig. -8.15. Schematic of kerosene
lamp.

The physical conditions in Figure 8.14 are
used to idealize the flow around an inner rode to
understand how to apply the surface tension to the
boundary conditions. The fluid surrounds the rode
and flows upwards. In that case, the velocity at the
surface of the inner rode is zero. The velocity at
the outer surface is unknown. The boundary con-
dition at outer surface given by a jump of the shear
stress. The outer diameter is depends on the sur-
face tension (the larger surface tension the smaller
the liquid diameter). The surface tension is a func-
tion of the temperature therefore the gradient in
surface tension is result of temperature gradient.
In this book, this effect is not discussed. However, somewhere downstream the temper-
ature gradient is insignificant. Even in that case, the surface tension gradient remains.
It can be noticed that, under the assumption presented here, there are two principal
radii of the flow. One radius toward the center of the rode while the other radius is
infinite (approximatly). In that case, the contribution due to the curvature is zero in
the direction of the flow (see Figure 8.15). The only (almost) propelling source of the
flow is the surface gradient (∂σ

∂n ).
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8.7 Examples for Differential Equation (Navier-Stokes)

Examples of an one-dimensional flow driven by the shear stress and pressure are pre-
sented. For further enhance the understanding some of the derivations are repeated.
First, example dealing with one phase are present. Later, examples with two phase are
presented.

Uℓ

flow direction

dy

z

y

x

Fig. -8.16. Flow between two plates, top plate is moving at speed of U` to the right (as
positive). The control volume shown in darker colors.

Example 8.6:
Incompressible liquid flows between two infinite plates from the left to the right (as
shown in Figure 8.16). The distance between the plates is `. The static pressure per
length is given as ∆P 23. The upper surface is moving in velocity, U` (The rightside is
defined as positive).

Solution

In this example, the mass conservation yields

=0︷ ︸︸ ︷
d

dt

∫

cv

ρdV = −
∫

cv

ρ UrndA = 0 (8.126)

The momentum is not accumulated (steady state and constant density). Further
because no change of the momentum thus

∫

A

ρUx UrndA = 0 (8.127)

Thus, the flow in and the flow out are equal. It can concluded that the velocity
in and out are the same (for constant density). The momentum conservation leads

−
∫

cv

PPPdA +
∫

cv

τxydA = 0 (8.128)

23The difference is measured at the bottom point of the plate.
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The reaction of the shear stress on the lower surface of control volume based on
Newtonian fluid is

τxy = −µ
dU

dy
(8.129)

On the upper surface is different by Taylor explanation as

τxy = µ




dU

dy
+

d2U

dy2
dy +

∼=0︷ ︸︸ ︷
d3U

dy3
dy2 + · · ·


 (8.130)

The net effect of these two will be difference between them

µ

(
dU

dy
+

d2U

dy2
dy

)
− µ

dU

dy
∼= µ

d2U

dy2
dy (8.131)

The assumptions is that there is no pressure difference in the z direction. The only
difference in the pressure is in the x direction and thus

P −
(

P +
dP

dx
dx

)
= −dP

dx
dx (8.132)

A discussion why ∂P
∂y ∼ 0 will be presented later. The momentum equation in the x

direction (or from equation (8.112)) results (without gravity effects) in

−dP

dx
= µ

d2U

dy2
(8.133)
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Velocity distributions in one dimensional flow

Ψ = −1.75

Ψ = −1.25
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Ψ = 0.25

Ψ = 0.75

Ψ = 1.25

Ψ = 1.75

Ψ = 2.25

Ψ = 2.75

October 4, 2010

Fig. -8.17. One dimensional flow with a shear
between two plates when Ψ change value be-
tween -1.75 green line to 3 the blue line.

Equation (8.133) was constructed under
several assumptions which include the di-
rection of the flow, Newtonian fluid. No
assumption was imposed on the pressure
distribution. Equation (8.133) is a partial
differential equation but can be treated as
ordinary differential equation in the z di-
rection of the pressure difference is uni-
form. In that case, the left hand side is
equal to constant. The “standard” bound-
ary conditions is non–vanishing pressure
gradient (that is the pressure exist) and
velocity of the upper or lower surface or
both. It is common to assume that the
“no slip” condition on the boundaries con-
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dition24. The boundaries conditions are

Ux(y = 0) = 0

Ux(y = `) = U`
(8.134)

The solution of the “ordinary” differential equation (8.133) after the integration be-
comes

Ux = −1
2

dP

dx
y2 + c2 y + c3 (8.135)

Applying the boundary conditions, equation (8.134)/ results in

Ux(y) =
y

`




=Ψ︷ ︸︸ ︷
`2

U0 2µ

dP

dx

(
1− y

`

)

 +

y

`
(8.136)

For the case where the pressure gradient is zero the velocity is linear as was discussed
earlier in Chapter 1 (see Figure 8.17). However, if the plates or the boundary conditions
do not move the solution is

Ux(y) =
(

`2

U0 2µ

dP

dx

(
1− y

`

))
+

y

`
(8.137)

What happen when ∂P
∂y ∼ 0?

End Solution

r

z
θ

r

θ

flow
Direction

dz

r

Fig. -8.18. The control volume of liquid element in cylindrical coordinates.

Cylindrical Coordinates

Similarly the problem of one dimensional flow can be constructed for cylindrical
coordinates. The problem is still one dimensional because the flow velocity is a function

24A discussion about the boundary will be presented later.
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of (only) radius. This flow referred as Poiseuille flow after Jean Louis Poiseuille a
French Physician who investigated blood flow in veins. Thus, Poiseuille studied the
flow in a small diameters (he was not familiar with the concept of Reynolds numbers).
Rederivation are carried out for a short cut.

The momentum equation for the control volume depicted in the Figure 8.18a is

−
∫

PPP dA +
∫

τdA =
∫

ρUz Urn dA (8.138)

The shear stress in the front and back surfaces do no act in the z direction. The shear
stress on the circumferential part small dark blue shown in Figure 8.18a is

∫
τ dA = µ

dUz

dr

dA︷ ︸︸ ︷
2 π r dz (8.139)

The pressure integral is

∫
PPP dA = (Pzdz − Pz) π r2 =

(
Pz +

∂P

∂z
dz − Pz

)
π r2 =

∂P

∂z
dz π r2 (8.140)

The last term is
∫

ρUz Urn dA = ρ

∫
Uz Urn dA =

ρ

(∫

z+dz

Uz+dz
2dA −

∫

z

Uz
2dA

)
= ρ

∫

z

(
Uz+dz

2 − Uz
2
)
dA

(8.141)

The term Uz+dz
2 − Uz

2 is zero because Uz+dz = Uz because mass conservation
conservation for any element. Hence, the last term is

∫
ρUz Urn dA = 0 (8.142)

Substituting equation (8.139) and (8.140) into equation (8.138) results in

µ
dUz

dr
2½π ¢r½½dz = −∂P

∂z
½½dz½π r ¤2 (8.143)

Which shrinks to

2 µ

r

dUz

dr
= −∂P

∂z
(8.144)

Equation (8.144) is a first order differential equation for which only one boundary
condition is needed. The “no slip” condition is assumed

Uz(r = R) = 0 (8.145)
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Where R is the outer radius of pipe or cylinder. Integrating equation (8.144) results in

Uz = − 1
µ

∂P

∂z
r2 + c1 (8.146)

It can be noticed that asymmetrical element25 was eliminated due to the smart short
cut. The integration constant obtained via the application of the boundary condition
which is

c1 = − 1
µ

∂P

∂z
R2 (8.147)

The solution is

Uz =
1
µ

∂P

∂z
R2

(
1−

( r

R

)2
)

(8.148)

While the above analysis provides a solution, it has several deficiencies which include the
ability to incorporate different boundary conditions such as flow between concentering
cyliders.

Example 8.7:

r

z
θ

r

θ

flow
Direction

r o
u
t

r i
n

Fig. -8.19. Liquid flow between con-
centric cylinders for example 8.7.

A liquid with a constant density is flow-
ing between concentering cylinders as
shown in Figure 8.19. Assume that
the velocity at the surface of the cylin-
ders is zero calculate the velocity pro-
file. Build the velocity profile when the
flow is one directional and viscosity is
Newtonian. Calculate the flow rate for
a given pressure gradient.

Solution

After the previous example, the appropriate version of the Navier–Stokes equation will
be used. The situation is best suitable to solved in cylindrical coordinates. One of
the solution of this problems is one dimensional solution. In fact there is no physical
reason why the flow should be only one dimensional. However, it is possible to satisfy
the boundary conditions. It turn out that the “simple” solution is the first mode that
appear in reality. In this solution will be discussing the flow first mode. For this mode,
the flow is assumed to be one dimensional. That is, the velocity isn’t a function of the
angle, or z coordinate. Thus only equation in z coordinate is needed. It can be noticed

25Asymmetrical element or function is −f(x) = f(−x)
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that this case is steady state and also the acceleration (convective acceleration) is zero

ρ




6=f(t)︷︸︸︷
∂Uz

∂t
+

=0︷︸︸︷
Ur

∂Uz

∂r
+

=0︷︸︸︷
Uφ

r

Uz 6=f(φ)︷︸︸︷
∂Uz

∂φ
+Uz

=0︷︸︸︷
∂Uz

∂z


 = 0 (8.149)

The steady state governing equation then becames

ρ
(
¢0
)

= 0 = −∂P

∂z
+ µ

(
1
r

∂

∂r

(
r
∂Uz

∂r

)
+

=0︷︸︸︷· · ·
)

+»»ρ gz (8.VII.a)

The PDE above (8.VII.a) required boundary conditions which are

Uz (r = ri) = 0

Uz (r = ro) = 0 (8.VII.b)

Integrating equation (8.VII.a) once results in

r
∂Uz

∂r
=

1
2 µ

∂P

∂z
r2 + c1 (8.VII.c)

Dividing equation (8.VII.c) and integrating results for the second times results

∂Uz

∂r
=

1
2 µ

∂P

∂z
r +

c1

r
(8.VII.d)

Integration of equation (8.VII.d) results in

Uz =
1

4 µ

∂P

∂z
r2 + c1 ln r + c2 (8.VII.e)

Applying the first boundary condition results in

0 =
1

4 µ

∂P

∂z
ri

2 + c1 ln ri + c2 (8.VII.f)

applying the second boundary condition yields

0 =
1

4 µ

∂P

∂z
ro

2 + c1 ln ro + c2 (8.VII.g)

The solution is

c1 =
1

4 µ
ln

(
ro

ri

)
∂P

dz

(
ro

2 − ri
2
)

c2 =
1

4 µ
ln

(
ro

ri

)
∂P

dz

(
ln(ri) ro

2 − ln(ro) ri
2
)

(8.VII.h)
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The solution is when substituting the constats into equation (8.VII.e) results in

Uz(r) =
1

4 µ

∂P

∂z
r2 +

1
4 µ

ln
(

ro

ri

)
∂P

dz

(
ro

2 − ri
2
)
ln r

+
1

4 µ
ln

(
ro

ri

)
∂P

dz

(
ln(ri) ro

2 − ln(ro) ri
2
)

(8.VII.i)

The flow rate is then

Q =
∫ ro

ri

Uz(r)dA (8.VII.j)

Or substituting equation (8.VII.i) into equation (8.VII.j) transfomed into

Q =
∫

A

[
1

4 µ

∂P

∂z
r2 +

1
4 µ

ln
(

ro

ri

)
∂P

dz

(
ro

2 − ri
2
)
ln r

+
1

4 µ
ln

(
ro

ri

)
∂P

dz

(
ln(ri) ro

2 − ln(ro) ri
2
)]

dA

(8.VII.k)

A finite intergation of the last term in the integrand results in zero because it is
constant. The integraion of the rest is

Q =
[

1
4 µ

∂P

∂z

] ∫ ro

ri

[
r2 + ln

(
ro

ri

) (
ro

2 − ri
2
)
ln r

]
2 π r dr (8.VII.l)

The first integration of the first part of the second squere bracket, (r3), is 1/4
(
ro

4 − ri
4
)
.

The second part, of the second squere bracket, (−a× r ln r) can be done by parts to
be as

a

(
r2

4
− r2 log (r)

2

)

Applying all these “techniques” to equation (8.VII.l) results in

Q =
[

π

2 µ

∂P

∂z

] [(
ro

4

4
− ri

4

4

)
+

ln
(

ro

ri

) (
ro

2 − ri
2
)(

ro
2 ln (ro)

2
− ro

2

4
− ri

2 ln (ri)
2

+
ri

2

4

)] (8.VII.m)

The averaged velocity is obtained by dividing flow rate by the area Q/A.

Uave =
Q

π (ro
2 − ri

2)
(8.150)

in which the identy of (a4 − b4)/(a2 − b2) is b2 + a2 and hence

Uave =
[

1
2 µ

∂P

∂z

] [(
ro

2

4
+

ri
2

4

)
+

ln
(

ro

ri

) (
ro

2 ln (ro)
2

− ro
2

4
− ri

2 ln (ri)
2

+
ri

2

4

)] (8.VII.n)
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End Solution

The next example deals with the gravity as body force in two dimensional flow.
This problem study by Nusselt26 which developed the basics equations. This problem is
related to many industrial process and is fundamental in understanding many industrial
processes. Furthermore, this analysis is a building bloc for heat and mass transfer
understanding27.

Example 8.8:
In many situations in nature and many industrial processes liquid flows downstream

pump

θ

y

x
h

g

g sin θ

g cos θ

θ

Fig. -8.20. Mass flow due to temperature
difference for example 8.1

on inclined plate at θ as shown in Figure
8.20. For this example, assume that the
gas density is zero (located outside the liq-
uid domain). Assume that “scale” is large
enough so that the “no slip” condition pre-
vail at the plate (bottom). For simplic-
ity, assume that the flow is two dimen-
sional. Assume that the flow obtains a
steady state after some length (and the ac-
celeration vanished). The dominate force
is the gravity. Write the governing equa-
tions for this situation. Calculate the ve-
locity profile. Assume that the flow is one
dimensional in the x direction.

Solution

This problem is sutiable to Cartesian coordinates in which x coordinate is pointed in
the flow direction and y perpendicular to flow direction (depicted in Figure 8.20). For
this system, the gravity in the x direction is g sin θ while the direction of y the gravity
is g cos θ. The governing in the x direction is

ρ




6=f(t)︷︸︸︷
∂Ux

∂t
+ Ux

=0︷︸︸︷
∂Ux

∂x
+

=0︷︸︸︷
Uy

∂Ux

∂y
+

−0︷︸︸︷
Uz

∂Ux

∂z


 =

−

∼0︷︸︸︷
∂P

∂x
+µ




=0︷ ︸︸ ︷
∂2Ux

∂x2
+

∂2Ux

∂y2
+

=0︷ ︸︸ ︷
∂2Ux

∂z2


 + ρ

g sin θ︷︸︸︷
gx

(8.VIII.a)

26German mechanical engineer, Ernst Kraft Wilhelm Nusselt born November 25, 1882 September 1,
1957 in Munchen

27Extensive discussion can be found in this author master thesis. Comprehensive discussion about
this problem can be found this author Master thesis.
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The first term of the acceleration is zero because the flow is in a steady state. The
first term of the convective acceleration is zero under the assumption of this example
flow is fully developed and hence not a function of x (nothing to be “improved”). The
second and the third terms in the convective acceleration are zero because the velocity
at that direction is zero (Uy = Uz = 0). The pressure is almost constant along the x
coordinate. As it will be shown later, the pressure loss in the gas phase (mostly air) is
negligible. Hence the pressure at the gas phase is almost constant hence the pressure
at the interface in the liquid is constant. The surface has no curvature and hence the
pressure at liquid side similar to the gas phase and the only change in liquid is in the
y direction. Fully developed flow means that the first term of the velocity Laplacian is
zero (∂Ux

∂x ≡ 0). The last term of the velocity Laplacian is zero because no velocity in
the z direction.

Thus, equation (8.VIII.a) is reduced to

0 = µ
∂2Ux

∂y2
+ ρ g sin θ (8.VIII.b)

With boundary condition of “no slip” at the bottom because the large scale and steady
state

Ux(y = 0) = 0 (8.VIII.c)

The boundary at the interface is simplified to be

∂Ux

∂y

∣∣∣∣
y=0

= τair (∼ 0) (8.VIII.d)

If there is additional requirement, such a specific velocity at the surface, the governing
equation can not be sufficient from the mathematical point of view. Integration of
equation (8.VIII.b) yields

∂Ux

∂y
=

ρ

µ
g sin θ y + c1 (8.VIII.e)

The integration constant can be obtain by applying the condition (8.VIII.d) as

τair = µ
∂Ux

∂y

∣∣∣∣
h

= −ρ g sin θ

y︷︸︸︷
h +c1 µ (8.VIII.f)

Solving for c1 results in

c1 =
τair

µ
+

1
ν︸︷︷︸
µ
ρ

g sin θ h
(8.VIII.g)

The second integration applying the second boundary condition yields c2 = 0 results
in

Ux =
g sin θ

ν

(
2 y h− y2

)− τair

µ
(8.VIII.h)



8.7. EXAMPLES FOR DIFFERENTIAL EQUATION (NAVIER-STOKES) 273

When the shear stress caused by the air is neglected, the velocity profile is

Ux =
g sin θ

ν

(
2 h y − y2

)
(8.VIII.i)

The flow rate per unit width is

Q

W
=

∫

A

UxdA =
∫ h

0

(
g sin θ

ν

(
2 h y − y2

)− τair

µ

)
dy (8.VIII.j)

Where W here is the width into the page of the flow. Which results in

Q

W
=

g sin θ

ν

2 h3

3
− τair h

µ
(8.VIII.k)

The average velocity is then

Ux =

Q

W
h

=
g sin θ

ν

2 h2

3
− τair

µ
(8.VIII.l)

Note the shear stress at the interface can be positive or negative and hence can increase
or decrease the flow rate and the averaged velocity.

End Solution

In the following following example the issue of driving force of the flow through
curved interface is examined. The flow in the kerosene lamp is depends on the surface
tension. The flow surface is curved and thus pressure is not equal on both sides of the
interface.

Example 8.9:
A simplified flow version the kerosene lump is of liquid moving up on a solid core.
Assume that radios of the liquid and solid core are given and the flow is at steady state.
Calculate the minimum shear stress that required to operate the lump (alternatively,
the maximum height).

8.7.1 Interfacial Instability

air (gas)

water (liquid)

same velocity

solutiony
x

h

a h

Fig. -8.21. Flow of liquid in partially filled duct.

In Example 8.8 no requirement was made
as for the velocity at the interface (the up-
per boundary). The vanishing shear stress
at the interface was the only requirement
was applied. If the air is considered two
governing equations must be solved one
for the air (gas) phase and one for water
(liquid) phase. Two boundary conditions
must be satisfied at the interface. For
the liquid, the boundary condition of “no
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slip” at the bottom surface of liquid must
be satisfied. Thus, there is total of three
boundary conditions28 to be satisfied. The
solution to the differential governing equations provides only two constants. The second
domain (the gas phase) provides another equation with two constants but again three
boundary conditions need to satisfied. However, two of the boundary conditions for
these equations are the identical and thus the six boundary conditions are really only 4
boundary conditions.

The governing equation solution29 for the gas phase (h ≥ y ≥ a h) is

Uxg =
g sin θ

2 νg
y2 + c1 y + c2 (8.151)

Note, the constants c1 and c2 are dimensional which mean that they have physical
units (c1 −→ [1/sec] The governing equation in the liquid phase (0 ≥ y ≥ h) is

Ux` =
g sin θ

2 ν`
y2 + c3 y + c4 (8.152)

The gas velocity at the upper interface is vanished thus

Uxg [(1 + a)h] = 0 (8.153)

At the interface the “no slip” condition is regularly applied and thus

Uxg(h) = Ux`(h) (8.154)

Also at the interface (a straight surface), the shear stress must be continuous

µg

∂Uxg

∂y
= µ`

∂Ux`

∂y
(8.155)

Assuming “no slip” for the liquid at the bottom boundary as

Ux`(0) = 0 (8.156)

The boundary condition (8.153) results in

0 =
g sin θ

2 νg
h2 (1 + a)2 + c1 h (1 + a) + c2 (8.157)

28 The author was hired to do experiments on thin film (gravity flow). These experiments were to
study the formation of small and big waves at the interface. The phenomenon is explained by the fact
that there is somewhere instability which is transferred into the flow. The experiments were conducted
on a solid concrete laboratory and the flow was in a very stable system. No matter how low flow
rate was small and big occurred. This explanation bothered this author, thus current explanation was
developed to explain the wavy phenomenon occurs.

29This equation results from double integrating of equation (8.VIII.b) and subtitling ν = µ/ρ.
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The same can be said for boundary condition (8.156) which leads

c4 = 0 (8.158)

Applying equation (8.155) yields

ρg︷︸︸︷
µg

νg
g sin θ h + c1 µg =

ρ`︷︸︸︷
µ`

ν`
g sin θ h + c3 µ` (8.159)

Combining boundary conditions equation(8.154) with (8.157) results in

g sin θ

2 νg
h2 + c1 h + c2 =

g sin θ

2 ν`
h2 + c3 h (8.160)

Advance material can be skipped

The solution of equation (8.157), (8.159) and (8.160) is obtained by computer
algebra (see in the code) to be

c1 = − sin θ (g h ρg (2 ρg ν` ρ` + 1) + a g h ν`)
ρg (2 a ν` + 2 ν`)

c2 =
sin θ

(
g h2 ρg (2 ρg ν` ρ` + 1)− g h2 ν`

)

2 ρg ν`

c3 =
sin θ (g h ρg (2 a ρg ν` ρ` − 1)− a g h ν`)

ρg (2 a ν` + 2 ν`)

(8.161)

End Advance material

When solving this kinds of mathematical problem the engineers reduce it to min-
imum amount of parameters to reduce the labor involve. So equation (8.157) trans-
formed by some simple rearrangement to be

(1 + a)2 =

C1︷ ︸︸ ︷
2 νg c1

g h sin θ
+

C2︷ ︸︸ ︷
2 c2 νg

g h2 sin θ
(8.162)

And equation (8.159)

1 +

1
2 C1︷ ︸︸ ︷
νg c1

g h sin θ
=

ρ`

ρg
+

1
2

µ`
µg

C3︷ ︸︸ ︷
µ` νg c3

µg g h sin θ
(8.163)
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and equation (8.160)

1 +
2 νg ¢h c1

h¤2 g sin θ
+

2 νg c2

h2 g sin θ
=

νg

ν`
+

2 νg ¢h c3

g h ¤2 sin θ
(8.164)

Or rearranging equation (8.164)

νg

ν`
− 1 =

C1︷ ︸︸ ︷
2 νg c1

h g sin θ
+

C2︷ ︸︸ ︷
2 νg c2

h2 g sin θ
−

C3︷ ︸︸ ︷
2 νg c3

g h sin θ
(8.165)

This presentation provide similarity and it will be shown in the Dimensional anal-
ysis chapter better physical understanding of the situation. Equation (8.162) can be
written as

(1 + a)2 = C1 + C2 (8.166)

Further rearranging equation (8.163)

ρ`

ρg
− 1 =

C1

2
− µ`

µg

C3

2
(8.167)

and equation (8.165)

νg

ν`
− 1 = C1 + C2 − C3 (8.168)

This process that was shown here is referred as non–dimensionalization30. The ratio
of the dynamics viscosity can be eliminated from equation (8.168) to be

µg

µ`

ρ`

ρg
− 1 = C1 + C2 − C3 (8.169)

The set of equation can be solved for the any ratio of the density and dynamic viscosity.
The solution for the constant is

C1 =
ρg

ρ`
− 2 + a2 + 2 a

µg

µ`
+ 2

µg

µ`
(8.170)

C2 =
−µg

µ`

ρ`

ρg
+ a

(
2

µg

µ`
− 2

)
+ 3

µg

µ`
+ a2

(
µg

µ`
− 1

)
− 2

µg

µ`

(8.171)

C3 = −µg

µ`

ρ`

ρg
+ a2 + 2 a + 2 (8.172)

30Later it will be move to the Dimensional Chapter
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The two different fluids31 have flow have a solution as long as the distance is finite
reasonable similar. What happen when the lighter fluid, mostly the gas, is infinite long.
This is one of the source of the instability at the interface. The boundary conditions of
flow with infinite depth is that flow at the interface is zero, flow at infinite is zero. The
requirement of the shear stress in the infinite is zero as well. There is no way obtain
one dimensional solution for such case and there is a component in the y direction.
Combining infinite size domain of one fluid with finite size on the other one side results
in unstable interface.

31This topic will be covered in dimensional analysis in more extensively. The point here the under-
standing issue related to boundary condition not per se solution of the problem.
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CHAPTER 9

Dimensional Analysis
This chapter is dedicated to my adviser, Dr. E.R.G.

Eckert. Genick Bar-Meir

9.1 Introductory Remarks

Dimensional analysis refers to techniques dealing with units or conversion to a unitless
system. The definition of dimensional analysis is not consistent in the literature which
span over various fields and times. Possible topics that dimensional analysis deals with
are consistency of the units, change order of magnitude, applying from the old and
known to unknown (see the Book of Ecclesiastes), and creation of group parameters
without any dimensions. In this chapter, the focus is on the applying the old to unknown
as different scales and the creation of dimensionless groups. These techniques gave birth
to dimensional parameters which have a great scientific importance. Since the 1940s1,
the dimensional analysis is taught and written in all fluid mechanics textbooks. The
approach or the technique used in these books is referred to as Buckingham–π–theory.
The π–theory was coined by Buckingham. However, there is another technique which
is referred to in the literature as the Nusselt’s method. Both these methods attempt
to reduce the number of parameters which affect the problem and reduce the labor in
solving the problem. The key in these techniques lays in the fact of consistency of the
dimensions of any possible governing equation(s) and the fact that some dimensions
are reoccurring. The Buckingham–π goes further and no equations are solved and even
no knowledge about these equations is required. In Buckingham’s technique only the

1The history of dimensional analysis is complex. Several scientists used this concept before Buck-
ingham and Nusselt (see below history section). Their work culminated at the point of publishing the
paper Buckingham’s paper and independently constructed by Nusselt. It is interesting to point out
that there are several dimensionless numbers that bear Nusselt and his students name, Nusselt number,
Schmidt number, Eckert number. There is no known dimensionless number which bears Buckingham
name. Buckingham’s technique is discussed and studied in Fluid Mechanics while almost completely
ignored by Heat and Mass Transfer researchers and their classes. Furthermore, in many advance fluid
mechanics classes Nusselt’s technique is used and Buckingham’s technique is abandoned. Perhaps this
fact can be attributed to tremendous influence Nusselt and his students had on the heat transfer field.
Even, this author can be accused for being bias as the Eckert’s last student. However, this author
observed that Nusselt’s technique is much more effective as it will demonstrated later.

279
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dimensions or the properties of the problem at hand are analyzed. This author is aware
of only a single class of cases were Buckingham’s methods is useful and or can solve
the problem namely the pendulum class problem (and similar).

The dimensional analysis was independently developed by Nusselt and improved
by his students/co workers (Schmidt, Eckert) in which the governing equations are used
as well. Thus, more information is put into the problem and thus a better understand-
ing on the dimensionless parameters is extracted. The advantage or disadvantage of
these similar methods depend on the point of view. The Buckingham–π technique is
simpler while Nusselt’s technique produces a better result. Sometime, the simplicity of
Buckingham’s technique yields insufficient knowledge or simply becomes useless. When
no governing equations are found, Buckingham’s method has usefulness. It can be
argued that these situations really do not exist in the Thermo–Fluid field. Nusselt’s
technique is more cumbersome but more precise and provide more useful information.
Both techniques are discussed in this book. The advantage of the Nusselt’s technique
are: a) compact presentation, b)knowledge what parameters affect the problem, c) eas-
ier to extent the solution to more general situations. In very complex problems both
techniques suffer from in inability to provide a significant information on the effective
parameters such multi-phase flow etc.

It has to be recognized that the dimensional analysis provides answer to what
group of parameters affecting the problem and not the answer to the problem. In fact,
there are fields in thermo–fluid where dimensional analysis, is recognized as useless.
For example, the area of multiphase flows there is no solution based on dimensionless
parameters (with the exception of the rough solution of Martinelli). In the Buckingham’s
approach it merely suggests the number of dimensional parameters based on a guess
of all parameters affecting the problem. Nusselt’s technique provides the form of these
dimensionless parameters, and the relative relationship of these parameters.

9.1.1 Brief History

The idea of experimentation with a different, rather than the actual, dimension was
suggested by several individuals independently. Some attribute it to Newton (1686)
who coined the phrase of “great Principle of Similitude.” Later, Maxwell a Scottish
Physicist played a major role in establishing the basic units of mass, length, and time
as building blocks of all other units. Another example, John Smeaton (8 June 1724–28
October 1792) was an English civil and mechanical engineer who study relation between
propeller/wind mill and similar devices to the pressure and velocity of the driving forces.

Jean B. J. Fourier (1768-1830) first attempted to formulate the dimensional analy-
sis theory. This idea was extend by William Froude (1810-1871) by relating the modeling
of open channel flow and actual body but more importantly the relationship between
drag of models to actual ships. While the majority of the contributions were done by
thermo–fluid guys the concept of the equivalent or similar propagated to other fields.
Aiméem Vaschy, a German Mathematical Physicist (1857–1899), suggested using sim-
ilarity in electrical engineering and suggested the Norton circuit equivalence theorems.
Rayleigh probably was the first one who used dimensional analysis (1872) to obtain
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the relationships between the physical quantities (see the question why the sky is blue
story).

Osborne Reynolds (1842–1912) was the first to derive and use dimensionless pa-
rameters to analyze experimental data. Riabouchunsky2 proposed of relating tempera-
ture by molecules velocity and thus creating dimensionless group with the byproduct of
compact solution (solution presented in a compact and simple form).

Buckingham culminated the dimensional analysis and similitude and presented it in
a more systematic form. In the about the same time (1915, Wilhelm Nusselt (November
25, 1882 – September 1, 1957), a German engineer, developed the dimensional analysis
(proposed the principal parameters) of heat transfer without knowledge about previous
work of Buckingham.

9.1.2 Theory Behind Dimensional Analysis

In chemistry it was recognized that there are fundamental elements that all the material
is made from (the atoms). That is, all the molecules are made from a combination of
different atoms. Similarly to this concept, it was recognized that in many physical
systems there are basic fundamental units which can describe all the other dimensions
or units in the system. For example, isothermal single component systems (which does
not undergo phase change, temperature change and observed no magnetic or electrical
effect) can be described by just basic four physical units. The units or dimensions
are, time, length, mass, quantity of substance (mole). For example, the dimension or
the units of force can be constructed utilizing Newton’s second law i.e. mass times
acceleration −→ ma = M L/t2. Increase of degree of freedom, allowing this system
to be non–isothermal will increase only by one additional dimension of temperature,
θ. These five fundamental units are commonly the building blocks for most of the
discussion in fluid mechanics (see Table of basic units 9.1).

Table -9.1. Basic Units of Two Common Systems

Standard System Old System

Name Letter Units Name Letter Unis

Mass M [kg] Force F [N ]

Length L [m] Length L [m]

Time t [sec] Time t [sec]

Temperature θ [◦C] Temperature T [◦C]

Additional Basic Units for Magnetohydrodynamics

Continued on next page

2Riabouchunsky, Nature Vol 99 p. 591, 1915
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Table -9.1. Basic Units of Two Common Systems (continue)

Standard System Old System

Name Letter Units Name Letter Unis

Electric
Current

A [A]mpere
Electric
Current

A [A]mpere

Luminous
Intensity

cd [cd] candle
Luminous
Intensity

cd [cd] candle

Chemical Reactions

Quantity of
substance

M mol
Quantity of
substance

M mol

The choice of these basic units is not unique and several books and researchers
suggest a different choice of fundamental units. One common selection is substituting
the mass with the force in the previous selection (F, t, L, mol, Temperature). This
author is not aware of any discussion on the benefits of one method over the other
method. Yet, there are situations in which first method is better than the second one
while in other situations, it can be the reverse. In this book, these two selections are
presented. Other selections are possible but not common and, at the moment, will not
be discussed here.

Example 9.1:
What are the units of force when the basic units are: mass, length, time, temperature
(M, L, t, θ)? What are the units of mass when the basic units are: force, length,
time, temperature (F, L, t, T)? Notice the different notation for the temperature in the
two systems of basic units. This notation has no significance but for historical reasons
remained in use.

Solution

These two systems are related as the questions are the reversed of each other. The
connection between the mass and force can be obtained from the simplified Newton’s
second law F = ma where F is the force, m is the mass, and a is the acceleration.
Thus, the units of force are

F =
M L

t2
(9.I.a)

For the second method the unit of mass are obtain from Equation (9.I.a) as

M =
F t2

L
(9.I.b)
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End Solution

The number of fundamental or basic dimensions determines the number of the
combinations which affect the physical3 situations. The dimensions or units which
affect the problem at hand can be reduced because these dimensions are repeating or
reoccurring. The Buckingham method is based on the fact that all equations must be
consistent with their units. That is the left hand side and the right hand side have to have
the same units. Because they have the same units the equations can be divided to create
unitless equations. This idea alludes to the fact that these unitless parameters can be
found without any knowledge of the governing equations. Thus, the arrangement of the
effecting parameters in unitless groups yields the affecting parameters. These unitless
parameters are the dimensional parameters. The following trivial example demonstrates
the consistency of units

Example 9.2:
Newton’s equation has two terms that related to force F = ma + ṁU . Where F
is force, m is the mass, a is the acceleration and dot above ṁ indicating the mass
derivative with respect to time. In particular case, this equation get a form of

F = ma + 7 (9.II.a)

where 7 represent the second term. What are the requirement on equation (9.II.a)?

Solution

Clearly, the units of [F ], ma and 7 have to be same. The units of force are [N ] which
is defined by first term of the right hand side. The same units force has to be applied
to 7 thus it must be in [N ].

End Solution

9.1.3 Dimensional Parameters Application for Experimental Study

The solutions for any situations which are controlled by the same governing equations
with same boundary conditions regardless of the origin the equation. The solutions are
similar or identical regardless to the origin of the field no matter if the field is physical, or
economical, or biological. The Buckingham’s technique implicitly suggested that since
the governing equations (in fluid mechanics) are essentially are the same, just knowing
the parameters is enough the identify the problem. This idea alludes to connections
between similar parameters to similar solution. The non–dimensionalization i.e. opera-
tion of reducing the number affecting parameters, has a useful by–product, the analogy
in other words, the solution by experiments or other cases. The analogy or similitude
refers to understanding one phenomenon from the study of another phenomenon. This
technique is employed in many fluid mechanics situations. For example, study of com-
pressible flow (a flow where the density change plays a significant part) can be achieved

3The dimensional analysis also applied in economics and other areas and the statement should
reflect this fact. However, this book is focused on engineering topics and other fields are not discussed.
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by study of surface of open channel flow. The compressible flow is also similar to traffic
on the highway. Thus for similar governing equations if the solution exists for one case
it is a solution to both cases.

The analogy can be used to conduct experiment in a cheaper way and/or a safer
way. Experiments in different scale than actual dimensions can be conducted for cases
where the actual dimensions are difficult to handle. For example, study of large air
planes can done on small models. On the other situations, larger models are used to
study small or fast situations. This author believes that at the present the Buckingham
method has extremely limited use for the real world and yet this method is presented in
the classes on fluid mechanics. Thus, many examples on the use of this method will be
presented in this book. On the other hand, Nusselt’s method has a larger practical use
in the real world and therefore will be presented for those who need dimensional analysis
for the real world. Dimensional analysis is useful also for those who are dealing with
the numerical research/calculation. This method supplement knowledge when some
parameters should be taken into account and why.

D1
D2

Fig. -9.1. Fitting rod into a hole.

Fitting a rod into a circular hole (see
Figure 9.1) is an example how dimensional
analysis can be used. To solve this prob-
lem, it is required to know two parameters;
1) the rode diameter and 2) the diameter
of the hole. Actually, it is required to have
only one parameter, the ratio of the rode
diameter to the hole diameter. The ratio
is a dimensionless number and with this
number one can tell that for a ratio larger
than one, the rode will not enter the hole;
and a ratio smaller than one, the rod is too
small. Only when the ratio is equal to one, the rode is said to be fit. This presentation
allows one to draw or present the situation by using only one coordinate, the radius
ratio. Furthermore, if one wants to deal with tolerances, the dimensional analysis can
easily be extended to say that when the ratio is equal from 0.99 to 1.0 the rode is fitting,
and etc. If one were to use the two diameters description, further significant information
will be needed. In the preceding simplistic example, the advantages are minimal. In
many real problems this approach can remove clattered views and put the problem into
focus. Throughout this book the reader will notice that the systems/equations in many
cases are converted to a dimensionless form to augment understanding.

9.1.4 The Pendulum Class Problem

The only known problem that dimensional analysis can solve (to some degree) is the
pendulum class problem. In this section several examples of the pendulum type problem
are presented. The first example is the classic Pendulum problem.

Example 9.3:
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θ

mg

ℓ

Fig. -9.2. Figure for ex-
ample 9.3

Derive the relationship for the gravity [g], frequency
[ ω] and length of pendulum [`]. Assume that no
other parameter including the mass affects the prob-
lem. That is, the relationship can be expressed as

ω = f (`, g) (9.III.a)

Notice in this problem, the real knowledge is pro-
vided, however in the real world, this knowledge is
not necessarily given or known. Here it is provided because the real solution is already
known from standard physics classes.4

Solution

The solution technique is based on the assumption that the indexical form is the ap-
propriate form to solve the problem. The Indexical form

ω = C1 × `agb (9.III.b)

The solution functional complexity is limited to the basic combination which has to
be in some form of multiplication of ` and g in some power. In other words, the
multiplication of ` g have to be in the same units of the frequency units. Furthermore,
assuming, for example, that a trigonometric function relates ` and g and frequency. For
example, if a sin function is used, then the functionality looks like ω = sin(` g). From
the units point of view, the result of operation not match i.e. (sec 6= sin (sec)). For
that reason the form in equation (9.III.b) is selected. To satisfy equation (9.III.b) the
units of every term are examined and summarized the following table.

Table -9.2. Units of the Pendulum Parameters

Parameter Units Parameter Units Parameter Units

ω t−1 ` L1 g L1t−2

Thus substituting of the Table 9.7 in equation (9.III.b) results in

t−1 = C1

(
L1

)a (
L1 t−2

)b
=⇒ La+bt−2 b (9.III.c)

after further rearrangement by multiply the left hand side by L0 results in

L0t−1 = C La+bt−2 b (9.III.d)

4The reader can check if the mass is assumed to affect the problem then, the result is different.
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In order to satisfy equation (9.III.d), the following must exist

0 = a + b and −1 = −2
b

(9.III.e)

The solution of the equations (9.III.e) is a = −1/2 and b = −1/2. Thus, the solution
is in the form of

ω = C1 `1/2 g−1/2 = C1

√
g

`
(9.III.f)

It can be observed that the value of C1 is unknown. The pendulum frequency is known
to be

ω =
1
2π

√
g

`
(9.III.g)

End Solution

What was found in this example is the form of the solution’s equation and fre-
quency. Yet, the functionality e.g. the value of the constant was not found. The
constant can be obtained from experiment for plotting ω as the abscissa and

√
`/g as

ordinate.
According to some books and researchers, this part is the importance of the di-

mensional analysis. It can be noticed that the initial guess merely and actually determine
the results. If, however, the mass is added to considerations, a different result will be
obtained. If the guess is relevant and correct then the functional relationship can be
obtained by experiments.

9.2 Buckingham–π–Theorem
All the physical phenomena that is under the investigation have n physical effecting
parameters such that

F1(q1, q2, q3, · · · , qn) = 0 (9.1)

where qi is the “i” parameter effecting the problem. For example, study of the pressure
difference created due to a flow in a pipe is a function of several parameters such

∆P = f(L,D, µ, ρ, U) (9.2)

In this example, the chosen parameters are not necessarily the most important param-
eters. For example, the viscosity, µ can be replaced by dynamic viscosity, ν. The choice
is made normally as the result of experience and it can be observed that ν is a function
of µ and ρ. Finding the important parameters is based on “good fortune” or perhaps
intuition. In that case, a new function can be defined as

F (∆P,L, D, µ, ρ, U) = 0 (9.3)

Again as stated before, the study of every individual parameter will create incredible
amount of data. However, Buckingham’s5 methods suggested to reduce the number of

5E. Buckingham, “Model Experiments and the Forms of Empirical Equations,” Transactions of the
American Society of Mechanical Engineers, Vol. 37, 1915.
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parameters. If independent parameters of same physical situation is m thus in general
it can be written as

F2(π1, π2, π3, · · · , πm) = 0 (9.4)

If there are n variables in a problem and these variables contain m primary dimensions
(for example M, L, T), then the equation relating all the variables will have (n-m)
dimensionless groups.

There are 2 conditions on the dimensionless parameters:

1. Each of the fundamental dimensions must appear in at least one of the m variables

2. It must not be possible to form a dimensionless group from one of the variables
within a recurring set. A recurring set is a group of variables forming a dimen-
sionless group.

In the case of the pressure difference in the pipe (Equation (9.3)) there are 6
variables or n = 6. The number of the fundamental dimensions is 3 that is m = 3 ([M],
[L], [t]) The choice of fundamental or basic units is arbitrary in that any construction
of these units is possible. For example, another combination of the basic units is time,
force, mass is a proper choice. According to Buckingham’s theorem the number of
dimensionless groups is n −m = 6 − 3 = 3. It can be written that one dimensionless
parameter is a function of two other parameters such as i

π1 = f (π2, π3) (9.5)

If indeed such a relationship exists, then, the number of parameters that control the
problem is reduced and the number of experiments that need to be carried is considerably
smaller. Note, the π–theorem does not specify how the parameters should be selected
nor what combination is preferred.

9.2.1 Construction of the Dimensionless Parameters

In the construction of these parameters it must be realized that every dimensionless
parameters has to be independent. The meaning of independent is that one dimen-
sionless parameter is not a multiply or a division of another dimensional parameter. In
the above example there are three dimensionless parameters which required of at least
one of the physical parameter per each dimensionless parameter. Additionally, to make
these dimensionless parameters independent they cannot be multiply or division of each
other.

For the pipe problem above, ` and D have the same dimension and therefore
both cannot be chosen as they have the same dimension. One possible combination
is of D, U and ρ are chosen as the recurring set. The dimensions of these physical
variables are: D = [L1], velocity of U = [L t−1] and density as ρ = [M L−3]. Thus,
the first term D can provide the length, [L], the second term, U , can provide the time
[t], and the third term, ρ can provide the mass [M ]. The fundamental units, L, t, and
M are length, time and mass respectively. The fundamental units can be written in
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terms of the physical units. The first term L is the described by D with the units of
[L]. The time, [t], can be expressed by D/U . The mass, [M ], can be expressed by
ρD3. Now the dimensionless groups can be constructed by looking at the remaining
physical parameters, ∆P , D and µ. The pressure difference, ∆P , has dimensions of
[M L−1 t−2] Therefore, ∆P M−1 L t2 is a dimensionless quantity and these values were
calculated just above this line. Thus, the first dimensionless group is

π1 =

[M L−1 t−2]︷︸︸︷
∆P

[M−1]︷ ︸︸ ︷
1

ρ D3

[L]︷︸︸︷
D

[t2]︷︸︸︷
D2

U2
=

unitless︷ ︸︸ ︷
∆P

ρU2
(9.6)

The second dimensionless group (using D) is

π2 =

[L]︷︸︸︷
D

[L−1]︷︸︸︷
`−1 =

D

L
(9.7)

The third dimensionless group (using µ dimension of [M L1 t−1]) and therefore dimen-
sionless is

π3 = µ

[M−1]︷ ︸︸ ︷
1

D3 ρ

[L]︷︸︸︷
D

[t]︷︸︸︷
D

U
=

µ

D U ρ
(9.8)

This analysis is not unique and there can be several other possibilities for selecting
dimensionless parameters which are “legitimately” correct for this approach.

There are roughly three categories of methods for obtaining the dimensionless
parameters. The first one solving it in one shot. This method is simple and useful for
a small number of parameters. Yet this method becomes complicated for large number
of parameters. The second method, some referred to as the building blocks method, is
described above. The third method is by using dimensional matrix which is used mostly
by mathematicians and is less useful for engineering purposes.

The second and third methods require to identification of the building blocks.
These building blocks are used to construct the dimensionless parameters. There are
several requirements on these building blocks which were discussed on page 287. The
main point that the building block unit has to contain at least the basic or fundamental
unit. This requirement is logical since it is a building block. The last method is mostly
used by mathematicians which leads and connects to linear algebra. The fact that this
method used is the hall mark that the material was written by mathematician. Here,
this material will be introduced for completeness sake with examples and several terms
associated with this technique.

9.2.2 Basic Units Blocks

In Thermo–Fluid science there are several basic physical quantities which summarized
in Table 9.1. In the table contains two additional physical/basic units that appear in
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magnetohydrodynamics (not commonly use in fluid mechanics). Many (almost all) of
the engineering dimensions used in fluid mechanics can be defined in terms of the four
basic physical dimensions M , L ,t and θ. The actual basic units used can be S.I. such as
kilograms, meters, seconds and Kelvins/Celsius or English system or any other system.
In using basic new basic physical units, M , L, t, and θ or the old system relieves the
discussion from using particular system measurements. The density, for example, units
are Mass/Length3 and in the new system the density will be expressed as M/L3 while
in S.I. kg/m3 and English system it slug/ft3. A common unit used in Fluid Mechanics
is the Force, which expressed in SI as Newton [N ]. The Newton defined as a force which
causes a certain acceleration of a specific mass. Thus, in the new system the force it
will be defined as M Lt−2. There are many parameters that contains force which is
the source reason why the old (or alternative) system use the force instead the mass.

There many physical units which are dimensionless by their original definition.
Examples to “naturally” being dimensionless are the angle, strains, ratio of specific
heats, k, friction coefficient, f and ratio of lengths. The angle represented by a ratio
of two sides of a triangle and therefor has no units nor dimensions. Strain is a ratio of
the change of length by the length thus has no units.

Quantities used in engineering can be reduced to six basic dimensions which are
presented in Table 9.1. The last two are not commonly used in fluid mechanics and
temperature is only used sometimes. Many common quantities are presented in the
following Table 9.3.

Table -9.3. Physical units for two common systems. Note the second (time) in large size units
appear as “s” while in small units as “sec.”

Standard System Old System

Name Letter Units Name Letter Unis

Area L2 [m2] Area L2 [m2]

Volume L3 [m3] Volume L3 [m3]

Angular
velocity

1
t

[
1

sec

] Angular
velocity

1
t

[
1

sec

]

Acceleration
L

t2
[

m
sec2

]
Acceleration

L

t2
[

m
sec2

]

Angular
acceleration

1
t2

[
1

sec2

] Angular
acceleration

1
t2

[
1

sec2

]

Force
M L

t2

[
kg m
sec2

]
Mass F t2

L

[
N s
m

]

Density
M

L3

[
kg
m3

]
Density

F t2

L4

[
kg
m3

]

Continued on next page
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Table -9.3. Basic Units of Two Common System (continue)

Standard System Old System

Name Letter Units Name Letter Unis

Momentum
M L

t

[
kg m
sec

]
Momentum F t [N sec]

Angular
Momentum

M L2

t
[kg m2

sec ] Angular
Momentum

L F t [mN s]

Torque
M L2

t2

[
kg m
sec2

]
Torque LF [mN ]

Absolute
Viscosity

M

L1 t1

[
kg
m s

] Absolute
Viscosity

t F

L2

[
N s
m2

]

Kinematic
Viscosity

L2

t1

[
m2

sec

] Kinematic
Viscosity

L2

t

[
m3

sec

]

Volume
flow rate

L3

t1
[sec] Volume

flow rate

L3

t1

[
m3

sec

]

Mass
flow rate

M

t1

[
kg
sec

]
Mass
flow rate

F t

L1

[
N s
m

]

Pressure
M

Lt2

[
kg

m sec

]
Pressure

F

L2

[
N
m2

]

Surface
Tension

M

t2

[
kg

sec2

]
Surface
Tension

F

L

[
N
m

]

Work or
Energy

M L2

t2

[
kg m2

sec2

] Work or
Energy

F L [N m]

Power
M L2

t3

[
kg m2

sec3

]
Power

F L

t1
[

N m
sec

]

Thermal
Conductivity

M L2

t3 θ

[
kg m2

s2 K

] Thermal
Conductivity

F

t T

[
N

m K

]

Specific
Heat

L2 θ2

t2

[
m2

s2 K

]
Specific
Heat

L2 T 2

t2

[
m2

s2 K

]

Entropy
M L2

t2 θ

[
kg m2

s2 K

]
Entropy

F L2

T

[
kg m2

s2 K

]

Specific
Entropy

L2

t2 θ

[
m2

s2 K

] Specific
Entropy

L2

t2 T

[
m2

s2 K

]

Continued on next page
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Table -9.3. Basic Units of Two Common System (continue)

Standard System Old System

Name Letter Units Name Letter Unis

Molar
Specific
Entropy

L2

t2 θ

[
kg m2

s2 K mol

] Molar
Specific
Entropy

L2

T t2

[
kg m2

s2 K mol

]

Enthalpy
M L2

t2

[
kg m2

sec2

]
Enthalpy F L [N m]

Specific
Enthalpy

M2

t2

[
m2

sec2

] Specific
Enthalpy

L2

t2

[
m2

sec2

]

Thermodynamic
Force

M L

t2 M

[
kg m

sec2 mol

]
Thermodynamic
Force

N

M

[
m2

sec2

]

Catalytic
Activity

M

t

[
mol
sec

] Catalytic
Activity

M

t

[
mol
sec

]

heat
transfer
rate

M L2

t3

[
kg m2

sec2

] heat
transfer
rate

LF

t

[
m N
sec

]

9.2.3 Implementation of Construction of Dimensionless Parame-
ters

9.2.3.1 One Shot Method: Constructing Dimensionless Parameters

In this method, the solution is obtained by assigning the powers to the affecting variables.
The results are used to compare the powers on both sides of the equation. Several
examples are presented to demonstrate this method.

Example 9.4:

R

Fig. -9.3. Resistance of infinite
cylinder.

An infinite cylinder is submerged and ex-
posed to an external viscous flow. The re-
searcher intuition suggests that the resis-
tance to flow, R is a function of the radius
r, the velocity U , the density, ρ, and the
absolute viscosity µ. Based on this limited
information construct a relationship of the
variables, that is

R = f(r, U, ρ, µ) (9.IV.a)
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Solution

The functionality should be in a form of

R = f
(
ra U b ρcµd

)
(9.IV.b)

The units of the parameters are provided in Table 9.3. Thus substituting the data from
the table into equation (9.IV.b) results in

R︷︸︸︷
ML

t2
= Constant




r︷︸︸︷
L




a



U︷︸︸︷
L

t




b 


ρ︷︸︸︷
M

L3




c 


µ︷︸︸︷
M

Lt




d

(9.IV.c)

From equation (9.IV.c) the following requirements can be obtained

time, t −2 = −b− d

mass,M 1 = c + d

length, L 1 = a + b− 3c− d

(9.IV.d)

In equations (9.IV.c) there are three equations and 4 unknowns. Expressing all the
three variables in term of d to obtain

a = 2− d

b = 2− d

c = 1− d

(9.IV.e)

Substituting equation (9.IV.e) into equation (9.IV.c) results in

R = Constant r2−d U2−d ρ1−d µd = Constant
(
ρ U2 r2

)(
µ

ρU r

)d

(9.IV.f)

Or rearranging equation yields

R

ρU2 r2
= Constant

(
µ

ρ U r

)d

(9.IV.g)

The relationship between the two sides in equation (9.IV.g) is related to the two
dimensionless parameters. In dimensional analysis the functionality is not clearly defined
by but rather the function of the parameters. Hence, a simple way, equation (9.IV.g)
can be represented as

R

ρU2 r2
= Constant f

(
µ

ρU r

)
(9.IV.h)

where the power of d can be eliminated.
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End Solution

An example of a ship6 is be a typical example were more than one dimensionless
is to constructed. Also introduction of dimensional matrix is presented.

Example 9.5:
The modern ship today is equipped with a propeller as the main propulsion mechanism.
The thrust, T is known to be a function of the radius, r, the fluid density, ρ, relative
velocity of the ship to the water, U , rotation speed, rpm or N , and fluid viscosity,
µ. Assume that no other parameter affects the thrust, find the functionality of these
parameters and the thrust.

Solution

The general solution under these assumptions leads to solution of

T = C ra ρb U c Nd µe (9.V.a)

It is convenient to arrange the dimensions and basic units in table. This table is referred
in the literature as the Dimensional matrix.

Table -9.4. Dimensional matrix

T r ρ U N µ

M 1 0 1 0 0 1

L 1 1 -3 1 0 -1

t -2 0 0 -1 -1 -1

Using the matrix results in

M Lt−2 = La (Lt)b (
ML−3

)c (
t−t

)d (
ML−1t−t

)e (9.V.b)

This matrix leads to three equations.

Mass,M 1 = c + e

Length, L 1 = a + b +−3c− e

time, t −2 = −c− d− e

(9.V.c)

6This author who worked as ship engineer during his twenties likes to present material related to
ships.
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The solution of this system is

a = 2 + d− e

b = 2− d− e

c = 1− e

(9.V.d)

Substituting the solution (9.V.d) into equation (9.V.a) yields

T = C r(2+d−e) ρ(2−d−e) U (1−e) Nd µf (9.V.e)

Rearranging equation (9.V.e) provides

T = C ρU2 r2

(
ρU r

µ

)d (
r N

U

)e

(9.V.f)

From dimensional analysis point of view the units under the power d and e are dimen-
sionless. Hence, in general it can be written that

T

ρU2 r2
= f

(
ρU r

µ

)
g

(
r N

U

)
(9.V.g)

where f and g are arbitrary functions to be determined in experiments. Note the rpm
or N refers to the rotation in radian per second even though rpm refers to revolution
per minute.

It has to be mentioned that these experiments have to constructed in such way
that the initial conditions and the boundary conditions are somehow “eliminated.” In
practical purposes the thrust is a function of Reynolds number and several other pa-
rameters. In this example, a limited information is provided on which only Reynolds
number with a additional dimensionless parameter is mentioned above.

End Solution

Example 9.6:
The surface wave is a small disturbance propagating in a liquid surface. Assume that
this speed for a certain geometry is a function of the surface tension, σ, density, ρ, and
the wave length of the disturbance (or frequency of the disturbance). The flow–in to
the chamber or the opening of gate is creating a disturbance. The knowledge when this
disturbance is important and is detected by with the time it traveled. The time control
of this certain process is critical because the chemical kinetics. The calibration of the
process was done with satisfactory results. Technician by mistake releases a chemical
which reduces the surface tension by half. Estimate the new speed of the disturbance.

Solution

In the problem the functional analysis was defined as

U = f(σ, ρ, λ) (9.VI.a)
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Equation (9.VI.a) leads to three equations as

U︷︸︸︷
L

t
=




ρ︷︸︸︷
M

L2




a 


σ︷︸︸︷
M

t2




b 


λ︷︸︸︷
L




c

(9.VI.b)

Mass, M a + b = 0

Length, L −2a + c = 1

time, t −2b = −1

(9.VI.c)

The solution of equation set (9.VI.c) results in

U =
√

σ

λ ρ
(9.VI.d)

Hence reduction of the surface tension by half will reduce the disturbance velocity by
1/
√

2.
End Solution

Example 9.7:
Eckert number represent the amount of dissipation. Alternative number represents the
dissipation, could be constructed as

Diss =
µ

(
dU

d`

)2

ρU2

`

U

=
µ

(
dU

d`

)2

`

ρ U3 (9.VII.a)

Show that this number is dimensionless. What is the physical interpretation it could
have? Flow is achieved steady state for a very long two dimensional channel where
the upper surface is moving at speed, Uup, and lower is fix. The flow is pure Couette
flow i.e. a linear velocity. Developed an expression for dissipation number using the
information provided.

Solution

The nominator and denominator have to have the same units.

µ︷︸︸︷
M

¶L t

( dU
d` )2

︷ ︸︸ ︷
½½L2

t2½½L2

`︷︸︸︷
¶L =

ρ︷︸︸︷
M

½½L3

U3︷︸︸︷
½½L3

t3; M

t3
=

M

t3

(9.VII.b)
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The averaged velocity could be a represented (there are better methods or choices)
of the energy flowing in the channel. The averaged velocity is U/2 and the velocity
derivative is dU/d` = constant = U/`. With these value of the Diss number is

Diss =
µ

(
U

`

)2

`

ρ
U3

8

=
4 µ

ρ ` U
(9.VII.c)

The results show that Dissipation number is not a function of the velocity. Yet, the
energy lost is a function of the velocity square E ∝ Diss µU .

End Solution

9.2.3.2 Building Blocks Method: Constructing Dimensional Parameters

Note, as opposed to the previous method, this technique allows one to find a single
or several dimensionless parameters without going for the whole calculations of the
dimensionless parameters.

Example 9.8:
Assume that the parameters that effects the centrifugal pumps are

Q Pump Flow rate rpm or N angular rotation speed

D rotor diameter ρ liquid density (assuming liq-
uid phase)

BT Liquid Bulk modulus µ liquid viscosity

ε typical roughness of pump
surface

g gravity force (body force)

∆P Pressure created by the
pump

Construct the functional relationship between the variables. Discuss the physical mean-
ing of these numbers. Discuss which of these dimensionless parameters can be neglected
as it is known reasonably.

Solution

The functionality can be written as

0 = f (D, N, ρ, Q, BT , µ, ε, g, ∆P ) (9.VIII.a)

The three basic parameters to be used are D [L], ρ [M], and N [t]. There are nine (9)
parameters thus the number of dimensionless parameters is 9 − 3 = 6. For simplicity
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the RPM will be denoted as N . The first set is to be worked on is Q, D, ρ, N as

Q︷︸︸︷
L3

t
=




D︷︸︸︷
L




a



ρ︷︸︸︷
M

L3




b 


N︷︸︸︷
1
t




c

(9.VIII.b)

Length, L a− 3b = 3

Mass,M b = 0

time, t −c = −1





=⇒ π1 =
Q

N D3
(9.VIII.c)

For the second term BT it follows

BT︷︸︸︷
M

Lt2
=




D︷︸︸︷
L




a



ρ︷︸︸︷
M

L3




b 


N︷︸︸︷
1
t




c

(9.VIII.d)

Mass,M b = 1

Length, L a− 3b = −1

time, t −c = −2





=⇒ π2 =
BT

ρN2 D2
(9.VIII.e)

The next term, µ,
µ︷︸︸︷
M

Lt
=




D︷︸︸︷
L




a



ρ︷︸︸︷
M

L3




b 


N︷︸︸︷
1
t




c

(9.VIII.f)

Mass,M b = 1

Length, L a− 3b = −1

time, t −c = −1





=⇒ π3 =
ρN2 D2

µ
(9.VIII.g)

The next term, ε,

ε︷︸︸︷
L =




D︷︸︸︷
L




a



ρ︷︸︸︷
M

L3




b 


N︷︸︸︷
1
t




c

(9.VIII.h)

Mass,M b = 0

Length, L a− 3b = 1

time, t −c = 0





=⇒ π4 =
ε

D
(9.VIII.i)
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The next term, g,
g︷︸︸︷
L

t2
=




D︷︸︸︷
L




a



ρ︷︸︸︷
M

L3




b 


N︷︸︸︷
1
t




c

(9.VIII.j)

Mass,M b = 0

Length, L a− 3b = 1

time, t −c = −2





=⇒ π5 =
g

D N2
(9.VIII.k)

The next term, ∆P , (similar to BT )

∆P︷︸︸︷
L

t2
=




D︷︸︸︷
L




a



ρ︷︸︸︷
M

L3




b 


N︷︸︸︷
1
t




c

(9.VIII.l)

Mass,M b = 1

Length, L a− 3b = −1

time, t −c = −2





=⇒ π6 =
∆P

ρN2 D2
(9.VIII.m)

The first dimensionless parameter π1 represents the dimensionless flow rate. The second
number represents the importance of the compressibility of the liquid in the pump. Some
argue that this parameter is similar to Mach number (speed of disturbance to speed
of sound. The third parameter is similar to Reynolds number since the combination
N D can be interpreted as velocity. The fourth number represents the production
quality (mostly mode by some casting process7). The fifth dimensionless parameter is
related to the ratio of the body forces to gravity forces. The last number represent the
“effectiveness” of pump or can be viewed as dimensionless pressure obtained from the
pump.

In practice, the roughness is similar to similar size pump and can be neglected.
However, if completely different size of pumps are compared then this number must
be considered. In cases where the compressibility of the liquid can be neglected or the
pressure increase is relatively insignificant, the second dimensionless parameter can be
neglected.

A pump is a device that intends to increase the pressure. The increase of the
pressure involves energy inserted to to system. This energy is divided to a useful
energy ( pressure increase) and to overcome the losses in the system. These losses
has several components which includes the friction in the system, change order of the
flow and “ideal flow” loss. The most dominate loss in pump is loss of order, also know
as turbulence (not covered yet this book.). If this physical phenomenon is accepted

7The modern production is made by die casting process. The reader is referred to “Fundamentals
of die casting design,” Genick Bar–Meir, Potto Project, 1999 to learn more.
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than the resistance is neglected and the fourth parameter is removed. In that case the
functional relationship can be written as

∆P

N2, D2
= f

(
Q

N D3

)
(9.VIII.n)

End Solution

9.2.3.3 Mathematical Method: Constructing Dimensional Parameters

Advance material can be skipped

under construction please ignore for time being
In the progression of the development of the technique the new evolution is the

mathematical method. It can be noticed that in the previous technique the same matrix
was constructed with different vector solution (the right hand side of the equation). This
fact is the source to improve the previous method. However, it has to be cautioned
that this technique is overkill in most cases. Actually, this author is not aware for any
case this technique has any advantage over the “building block” technique.

In the following hypothetical example demonstrates the reason for the reduction
of variables. Assume that water is used to transport uniform grains of gold. The total
amount grains of gold is to be determined per unit length. For this analysis it is assumed
that grains of gold grains are uniformly distributed. The following parameters and their
dimensions are considered:

Table -9.5. Units and Parameters of gold grains

Parameters Units Dimension Remarks

grains amount q M/L total grains per unit length

cross section area A L2 pipe cross section

grains per volume gr grains/L3 count of grain per V

grain weight e M/grain count of grain per V

Notice that grains and grain are the same units for this discussion. Accordingly, the
dimensional matrix can be constructed as
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Table -9.6. gold grain dimensional matrix

q A gr e

M 1 0 0 1

L 1 2 3 0

grain 0 0 1 -1

In this case the total number variables are 4 and number basic units are 3. Thus, the
total of one dimensional parameter.

End ignore section

End Advance material

9.2.4 Similarity and Similitude

One of dimensional analysis is the key point is the concept that the solution can be ob-
tained by conducting experiments on similar but not identical systems. The analysis here
suggests and demonstrates8 that the solution is based on several dimensionless num-
bers. Hence, constructing experiments of the situation where the same dimensionless
parameters obtains could, in theory, yield a solution to problem at hand. Thus, knowing
what are dimensionless parameters should provide the knowledge of constructing the
experiments.

In this section deals with these similarities which in the literature some refer as
analogy or similitude. It is hard to obtain complete similarity. Hence, there is discussion
how similar the model is to the prototype. It is common to differentiate between
three kinds of similarities: geometric, kinetics, and dynamic. This characterization
started because historical reasons and it, some times, has merit especially when applying
Buckingham’s method. In Nusselt’s method this differentiation is less important.

Geometric Similarity

One of the logical part of dimensional analysis is how the experiences should be
similar to actual body they are supposed to represent. This logical conclusion is an add–
on and this author is not aware of any proof to this requirement based on Buckingham’s
methods. Ironically, this conclusion is based on Nusselt’s method which calls for the
same dimensionless boundary conditions. Again, Nusselt’s method, sometimes or even
often, requires similarity because the requirements to the boundary conditions. Here9

this postulated idea is adapted.

8This statement is too strong. It has to be recognized that the results are as good as the guessing
which in most cases is poor.

9Because this book intend to help students to pass their exams, this book present what most
instructors required. It well established that this over–strict requirement and under Nusselt’s method
it can be overcome.
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Under this idea the prototype area has to be square of the actual model or

Ap

Am
=

(
`1prototype

`1model

)2

=
(

`2p

`2m

)2

(9.9)

where `1 and `2 are the typical dimensions in two different directions and subscript p
refers to the prototype and m to the model. Under the same argument the volumes
change with the cubes of lengths.

In some situations, the model faces inability to match two or more dimensionless
parameters. In that case, the solution is to sacrifice the geometric similarity to minimize
the undesirable effects. For example, river modeling requires to distort vertical scales
to eliminate the influence of surface tension or bed roughness or sedimentation.

Kinematic Similarity

The perfect kinetics similarity is obtained when there are geometrical similarity
and the motions of the fluid above the objects are the same. If this similarity is not
possible, then the desire to achieve a motion “picture” which is characterized by ratios
of corresponding velocities and accelerations is the same throughout the actual flow
field. It is common in the literature, to discuss the situations there the model and
prototype are similar but the velocities are different by a different scaling factor.

The geometrical similarity aside the shapes and counters of the object it also can
requires surface roughness and erosion of surfaces of mobile surfaces or sedimentation
of particles surface tensions. These impose demands require a minimum on the friction
velocity. In some cases the minimum velocity can be Umin =

√
τw/ρ. For example,

there is no way achieve low Reynolds number with thin film flow.

Dynamics Similarity

The dynamic similarity has many confusing and conflicting definitions in the lit-
erature. Here this term refers to similarity of the forces. It follows, based on Newton’s
second law, that this requires that similarity in the accelerations and masses between
the model and prototype. It was shown that the solution is a function of several typical
dimensionless parameters. One of such dimensionless parameter is the Froude number.
The solution for the model and the prototype are the same, since both cases have the
same Froude number. Hence it can be written that

(
U2

g `

)

m

=
(

U2

g `

)

p

(9.10)

It can be noticed that t ∼ `/U thus equation (9.10) can be written as
(

U

g t

)

m

=
(

U

g t

)

p

(9.11)

and noticing that a ∝ U/t
(

a

g

)

m

=
(

a

g

)

p

(9.12)
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and a ∝ F/m and m = ρ `3 hence a = F/ρ `3. Substituting into equation (9.12)
yields

(
F

ρ `3

)

m

=
(

F

ρ `3

)

p

=⇒ Fp

Fm
=

(
ρ `3

)
p

(ρ `3)m

(9.13)

In this manipulation, it was shown that the ratio of the forces in the model and
forces in the prototype is related to ratio of the dimensions and the density of the same
systems. While in Buckingham’s methods these hand waiving are not precise, the fact
remains that there is a strong correlation between these forces. The above analysis was
dealing with the forces related to gravity. A discussion about force related the viscous
forces is similar and is presented for the completeness.

The Reynolds numbers is a common part of Navier–Stokes equations and if the
solution of the prototype and for model to be same, the Reynolds numbers have to be
same.

Rem = Rep =⇒
(

ρU `

µ

)

m

=
(

ρU `

µ

)

p

(9.14)

Utilizing the relationship U ∝ `/t transforms equation (9.14) into

(
ρ `2

µ t

)

m

=
(

ρ `2

µ t

)

p

(9.15)

multiplying by the length on both side of the fraction by ` Uas

(
ρ `3 U

µ t ` U

)

m

=
(

ρ `3 U

µ t `U

)

p

=⇒
(
ρ `3 U/t

)
m

(ρ `3 U/t)p

=
(µ ` U)m

(µ `U)p

(9.16)

Noticing that U/t is the acceleration and ρ ` is the mass thus the forces on the right
hand side are proportional if the Re number are the same. In this analysis/discussion,
it is assumed that a linear relationship exist. However, the Navier–Stokes equations
are not linear and hence this assumption is excessive and this assumption can produce
another source of inaccuracy.

While this explanation is a poor practice for the real world, it common to provide
questions in exams and other tests on this issue. This section is provide to this purpose.

Example 9.9:
The liquid height rises in a tube due to the surface tension, σ is h. Assume that
this height is a function of the body force (gravity, g), fluid density, ρ, radius, r,
and the contact angle θ. Using Buckingham’s theorem develop the relationship of the
parameters. In experimental with a diameter 0.001 [m] and surface tension of 73 milli-
Newtons/meter and contact angle of 75◦ a height is 0.01 [m] was obtained. In another
situation, the surface tension is 146 milli-Newtons/meter, the diameter is 0.02 [m] and
the contact angle and density remain the same. Estimate the height.
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Solution

It was given that the height is a function of several parameters such

h = f (σ, ρ, g, θ, r) (9.IX.a)

There are 6 parameters in the problem and the 3 basic parameters [L, M, t]. Thus the
number of dimensionless groups is (6-3=3). In Buckingham’s methods it is either that
the angle isn’t considered or the angle is dimensionless group by itself. Five parameters
are left to form the next two dimensionless groups.

One technique that was suggested is the possibility to use three parameters which
contain the basic parameters [M, L, t] and with them form a new group with each of
the left over parameters. In this case, density, ρ for [M] and d for [L] and gravity, g for
time [t]. For the surface tension, σ it becomes

[ ρ︷ ︸︸ ︷
M L−3

]a

[
r︷︸︸︷
L ]b

[ g︷ ︸︸ ︷
L t−2

]c [ σ︷ ︸︸ ︷
M t−2

]1

= M0 L0 t0 (9.IX.b)

Equation (9.IX.b) leads to three equations which are

Mass, M a + 1 = 0

Length, L −3a + b + c = 0

time, t −2c− 2 = 0

(9.IX.c)

the solution is a = −1 b = −2 c = −1 Thus the dimensionless group is
σ

ρ r2 g
. The

third group obtained under the same procedure to be h/r.
In the second part the calculations for the estimated of height based on the new

ratios. From the above analysis the functional dependency can be written as

h

d
= f

(
σ

ρ r5 g
, θ

)
(9.IX.d)

which leads to the same angle and the same dimensional number. Hence,

h1

d1
=

h2

d2
= f

(
σ

ρ r2 g
, θ

)
(9.IX.e)

Since the dimensionless parameters remain the same, the ratio of height and radius
must be remain the same. Hence,

h2 =
h1 d2

d1
=

0.01× 0.002
0.001

= 0.002 (9.IX.f)

End Solution
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9.3 Nusselt’s Technique
The Nusselt’s method is a bit more labor intensive, in that the governing equations with
the boundary and initial conditions are used to determine the dimensionless parameters.
In this method, the boundary conditions together with the governing equations are taken
into account as opposed to Buckingham’s method. A common mistake is to ignore the
boundary conditions or initial conditions. The parameters that results from this process
are the dimensional parameters which control the problems. An example comparing the
Buckingham’s method with Nusselt’s method is presented.

In this method, the governing equations, initial condition and boundary conditions
are normalized resulting in a creation of dimensionless parameters which govern the
solution. It is recommended, when the reader is out in the real world to simply abandon
Buckingham’s method all together. This point can be illustrated by example of flow
over inclined plane. For comparison reasons Buckingham’s method presented and later
the results are compared with the results from Nusselt’s method.

Example 9.10:
Utilize the Buckingham’s method to analyze a two dimensional flow in incline plane.
Assume that the flow infinitely long and thus flow can be analyzed per width which is
a function of several parameters. The potential parameters are the angle of inclination,
θ, liquid viscosity, ν, gravity, g, the height of the liquid, h, the density, ρ, and liquid
velocity, U . Assume that the flow is not affected by the surface tension (liquid), σ. You
furthermore are to assume that the flow is stable. Develop the relationship between the
flow to the other parameters.

Solution

Under the assumptions in the example presentation leads to following

ṁ = f (θ, ν, g, ρ, U) (9.17)

The number of basic units is three while the number of the parameters is six thus the
difference is 6 − 3 = 3. Those groups (or the work on the groups creation) further
can be reduced the because angle θ is dimensionless. The units of parameters can be
obtained in Table 9.3 and summarized in the following table.

Table -9.7. Units of the Pendulum Parameters

Parameter Units Parameter Units Parameter Units

ν L2t−1 g L1t−2 U L1t−1

ṁ Mt−1L−1 θ none ρ ML3
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The basic units are chosen as for the time, U , for the mass, ρ, and for the length g.
Utilizing the building blocks technique provides

ṁ︷︸︸︷
M

tL
=




ρ︷︸︸︷
M

L3




a 


g︷︸︸︷
L

t2




b 


U︷︸︸︷
L

t




c

(9.X.a)

The equations obtained from equation (9.X.a) are

Mass,M a = 1

Length, L −3a + b + c = −1

time, t −2b− c = −1





=⇒ π1 =
ṁ g

ρ U3
(9.X.b)

ν︷︸︸︷
L2

t
=




ρ︷︸︸︷
M

L3




a 


g︷︸︸︷
L

t2




b 


U︷︸︸︷
L

t




c

(9.X.c)

The equations obtained from equation (9.X.a) are

Mass,M a = 0

Length, L −3a + b + c = 2

time, t −2b− c = −1





=⇒ π2 =
ν g

U3
(9.X.d)

Thus governing equation and adding the angle can be written as

0 = f

(
ṁ g

ρ U3
,
ν g

U3
, θ

)
(9.X.e)

The conclusion from this analysis are that the number of controlling parameters totaled
in three and that the initial conditions and boundaries are irrelevant.

End Solution

A small note, it is well established that the combination of angle gravity or effective
body force is significant to the results. Hence, this analysis misses, at the very least,
the issue of the combination of the angle gravity. Nusselt’s analysis requires that the
governing equations along with the boundary and initial conditions to be written. While
the analytical solution for this situation exist, the parameters that effect the problem
are the focus of this discussion.

In Chapter 8, the Navier–Stokes equations were developed. These equations along
with the energy, mass or the chemical species of the system, and second laws governed
almost all cases in thermo–fluid mechanics. This author is not aware of a compelling
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reason that this fact10 should be used in this chapter. The two dimensional NS equation
can obtained from equation (8.VIII.a) as

ρ

(
∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
+ Uz

∂Ux

∂z

)
=

−∂P

∂x
+ µ

(
∂2Ux

∂x2
+

∂2Ux

∂y2
+

∂2Ux

∂z2

)
+ ρg sin θ

(9.18)

and

ρ

(
∂Uy

∂t
+ Ux

∂Uy

∂x
+ Uy

∂Uy

∂y
+ Uz

∂Uy

∂z

)
=

−∂P

∂x
+ µ

(
∂2Uy

∂x2
+

∂2Uy

∂y2
+

∂2Uy

∂z2

)
+ ρg sin θ

(9.19)

With boundary conditions

Ux(y = 0) = U0xf(x)

∂Ux

∂x
(y = h) = τ0f(x)

(9.20)

The value U0x and τ0 are the characteristic and maximum values of the velocity or the
shear stress, respectively. and the initial condition of

Ux(x = 0) = U0y f(y) (9.21)

where U0y is characteristic initial velocity.

These sets of equations (9.18)–(9.21) need to be converted to dimensionless
equations. It can be noticed that the boundary and initial conditions are provided in a
special form were the representative velocity multiply a function. Any function can be
presented by this form.

In the process of transforming the equations into a dimensionless form associated
with some intelligent guess work. However, no assumption is made or required about
whether or not the velocity, in the y direction. The only exception is that the y com-
ponent of the velocity vanished on the boundary. No assumption is required about the
acceleration or the pressure gradient etc.

The boundary conditions have typical velocities which can be used. The velocity
is selected according to the situation or the needed velocity. For example, if the effect
of the initial condition is under investigation than the characteristic of that velocity
should be used. Otherwise the velocity at the bottom should be used. In that case, the

10In economics and several other areas, there are no governing equations established for the field nor
there is necessarily concept of conservation of something. However, writing the governing equations
will yield dimensionless parameters as good as the initial guess.
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boundary conditions are

Ux(y = 0)
U0x

= f(x)

µ
∂Ux

∂x
(y = h) = τ0 g(x)

(9.22)

Now it is very convenient to define several new variables:

U =
Ux(x)
U0x

where :

x =
x

h
y =

y

h

(9.23)

The length h is chosen as the characteristic length since no other length is provided.
It can be noticed that because the units consistency, the characteristic length can be
used for “normalization” (see Example 9.11). Using these definitions the boundary and
initial conditions becomes

Ux(y=0)
U0x

= f
′
(x)

hµ

U0x

∂Ux

∂x
(y = 1) = τ0 g

′
(x)

(9.24)

It commonly suggested to arrange the second part of equation (9.24) as

∂Ux

∂x
(y = 1) =

τ0 U0x

hµ
g
′
(x) (9.25)

Where new dimensionless parameter, the shear stress number is defined as

τ0 =
τ0 U0x

hµ
(9.26)

With the new definition equation (9.25) transformed into

∂Ux

∂x
(y = 1) = τ0 g

′
(x) (9.27)

Example 9.11:
Non–dimensionalize the following boundary condition. What are the units of the coef-
ficient in front of the variables, x. What are relationship of the typical velocity, U0 to
Umax?

Ux(y = h) = U0

(
a x2 + b exp(x)

)
(9.XI.a)
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Solution

The coefficients a and b multiply different terms and therefore must have different units.
The results must be unitless thus a

L0 = a

x2︷︸︸︷
L2 =⇒ a =

[
1
L2

]
(9.XI.b)

From equation (9.XI.b) it clear the conversion of the first term is Ux = a h2x. The
exponent appears a bit more complicated as

L0 = b exp
(
h

x

h

)
= b exp (h) exp

(x

h

)
= b exp (h) exp (x) (9.XI.c)

Hence defining

b =
1

exp h
(9.XI.d)

With the new coefficients for both terms and noticing that y = h −→ y = 1 now can
be written as

Ux(y = 1)
U0

=

a︷︸︸︷
a h2 x2 +

b︷ ︸︸ ︷
b exp (h) exp (x) = a x2 + b exp x

(9.XI.e)

Where a and b are the transformed coefficients in the dimensionless presentation.
End Solution

After the boundary conditions the initial condition can undergo the non–dimensional
process. The initial condition (9.21) utilizing the previous definitions transformed into

Ux(x = 0)
U0x

=
U0y

U0x
f(y) (9.28)

Notice the new dimensionless group of the velocity ratio as results of the boundary
condition. This dimensionless number was and cannot be obtained using the Buck-
ingham’s technique. The physical significance of this number is an indication to the
“penetration” of the initial (condition) velocity.

The main part of the analysis if conversion of the governing equation into a di-
mensionless form uses previous definition with additional definitions. The dimensionless
time is defined as t = t U0x/h. This definition based on the characteristic time of
h/U0x. Thus, the derivative with respect to time is

∂Ux

∂t
=

∂

Ux
U0x︷︸︸︷
Ux U0x

∂ t︸︷︷︸
t U0x

h

h
U0x

=
U0x

2

h

∂Ux

∂t
(9.29)
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Notice that the coefficient has units of acceleration. The second term

Ux
∂Ux

∂x
=

Ux
U0x︷︸︸︷
Ux U0x

∂

Ux
U0x︷︸︸︷
Ux U0x

∂ x︸︷︷︸
x
h

h
=

U0x
2

h
Ux

∂Ux

∂x
(9.30)

The pressure is normalized by the same initial pressure or the static pressure as
(P − P∞) / (P0 − P∞) and hence

∂P

∂x
=

∂

P−P∞
P0−P∞︷︸︸︷

P

∂xh
(P0 − P∞) =

(P0 − P∞)
h

∂P

∂x
(9.31)

The second derivative of velocity looks like

∂2Ux

∂x2
=

∂

∂ (xh)
∂

(
UxU0x

)

∂ (xh)
=

U0x

h2

∂2Ux

∂x2 (9.32)

The last term is the gravity g which is left for the later stage. Substituting all terms
and dividing by density, ρ result in

U0x
2

h

(
∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
+ Uz

∂Ux

∂z

)
=

−P0 − P∞
h ρ

∂P

∂x
+

U0xµ

h2 ρ

(
∂2Ux

∂x2
+

∂2Ux

∂y2
+

∂2Ux

∂z2

)
+ ¢ρg

¢ρ
sin θ

(9.33)

Dividing equation (9.33) by U0x
2/h yields

(
∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
+ Uz

∂Ux

∂z

)
=

−P0 − P∞
U0x

2 ρ

∂P

∂x
+

µ

U0x h ρ

(
∂2Ux

∂x2
+

∂2Ux

∂y2
+

∂2Ux

∂z2

)
+ g h

U0x
2 sin θ

(9.34)

Defining “initial” dimensionless parameters as

Re =
U0x h ρ

µ
Fr =

U0x√
g h

Eu =
P0 − P∞
U0x

2 ρ
(9.35)

Substituting definition of equation (9.35) into equation (9.36) yields
(

∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
+ Uz

∂Ux

∂z

)
=

−Eu
∂P

∂x
+

1
Re

(
∂2Ux

∂x2
+

∂2Ux

∂y2
+

∂2Ux

∂z2

)
+

1
Fr2

sin θ

(9.36)
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Equation (9.36) show one common possibility of a dimensionless presentation of gov-
erning equation. The significance of the large and small value of the dimensionless
parameters will be discuss later in the book. Without actually solving the problem,
Nusselt’s method provides several more parameters that were not obtained by the block
method. The solution of the governing equation is a function of all the parameters
present in that equation and boundaries condition as well the initial condition. Thus,
the solution is

Ux = f

(
x, y, Eu, Re, Fr, θ, τ0, fu, fτ ,

U0y

U0x

)
(9.37)

The values of x, y depend on h and hence the value of h is an important parameter.
It can be noticed with Buckingham’s method, the number of parameters obtained

was only three (3) while Nusselt’s method yields 12 dimensionless parameters. This is
a very significant difference between the two methods. In fact, there are numerous
examples in the literature that showing people doing experiments based on Bucking-
ham’s methods. In these experiments, major parameters are ignored rendering these
experiments useless in many cases and deceiving.

Common Transformations

Fluid mechanics in particular and Thermo–Fluid field in general have several com-
mon transformations that appear in boundary conditions, initial conditions and equa-
tions11 . It recognized that not all the possibilities can presented in the example shown
above. Several common boundary conditions which were not discussed in the above
example are presented below. As an initial matter, the results of the non dimensional
transformation depends on the selection of what and how is nondimensionalization car-
ried. This section of these parameters depends on what is investigated. Thus, one of
the general nondimensionalization of the Navier–Stokes and energy equations will be
discussed at end of this chapter.

Boundary conditions are divided into several categories such as a given value to
the function12, given derivative (Neumann b.c.), mixed condition, and complex condi-
tions. The first and second categories were discussed to some degree earlier and will
be expanded later. The third and fourth categories were not discussed previously. The
non–dimensionalization of the boundary conditions of the first category requires finding
and diving the boundary conditions by a typical or a characteristic value. The second
category involves the nondimensionalization of the derivative. In general, this process
involve dividing the function by a typical value and the same for length variable (e.g.
x) as

∂U

∂x
=

`

U0

∂
(

U
U0

)

∂
(

x
`

) =
`

U0

∂U

∂x
(9.38)

11Many of these tricks spread in many places and fields. This author is not aware of a collection of
this kind of transforms.

12The mathematicians like to call Dirichlet conditions
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In the Thermo–Fluid field and others, the governing equation can be of higher order
than second order13. It can be noticed that the degree of the derivative boundary
condition cannot exceed the derivative degree of the governing equation (e.g. second
order equation has at most the second order differential boundary condition.). In general
“nth” order differential equation leads to

∂nU

∂xn
=

U0

`n

∂n
(

U
U0

)

∂
(

x
`

)n =
U0

`n

∂nU

∂xn (9.39)

The third kind of boundary condition is the mix condition. This category includes
combination of the function with its derivative. For example a typical heat balance at
liquid solid interface reads

h(T0 − T ) = −k
∂T

∂x
(9.40)

This kind of boundary condition, since derivative of constant is zero, translated to

h(((((((T0 − Tmax)
(

T0 − T

T0 − Tmax

)
= −k(((((((T0 − Tmax)

`

−∂

(
T − T0

T0 − Tmax

)

∂
(x

`

) (9.41)

or

(
T0 − T

T0 − Tmax

)
=

k

h `

∂

(
T − T0

T0 − Tmax

)

∂
(x

`

) =⇒ Θ =
1

Nu

∂Θ
∂x

(9.42)

Where Nusselt Number and the dimensionless temperature are defined as

Nu =
h `

k
Θ =

T − T0

T0 − Tmax
(9.43)

and Tmax is the maximum or reference temperature of the system.
The last category is dealing with some non–linear conditions of the function with

its derivative. For example,

∆P ≈ σ

(
1
r1

+
1
r2

)
=

σ

r1

r1 + r2

r2
(9.44)

Where r1 and r2 are the typical principal radii of the free surface curvature, and, σ, is
the surface tension between the gas (or liquid) and the other phase. The surface geom-
etry (or the radii) is determined by several factors which include the liquid movement

13This author aware of fifth order partial differential governing equations in some cases. Thus, the
highest derivative can be fifth order derivative.
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instabilities etc chapters of the problem at hand. This boundary condition (9.45) can
be rearranged to be

∆P r1

σ
≈ r1 + r2

r2
=⇒ Av ≈ r1 + r2

r2
(9.45)

Where Av is Avi number . The Avi number represents the geometrical character-
istics combined with the material properties. The boundary condition (9.45) can be
transferred into

∆P r1

σ
= Av (9.46)

Where ∆P is the pressure difference between the two phases (normally between the
liquid and gas phase).

One of advantage of Nusselt’s method is the Object–Oriented nature which allows
one to add additional dimensionless parameters for addition “degree of freedom.” It
is common assumption, to initially assume, that liquid is incompressible. If greater
accuracy is needed than this assumption is removed. In that case, a new dimensionless
parameters is introduced as the ratio of the density to a reference density as

ρ =
ρ

ρ0
(9.47)

In case of ideal gas model with isentropic flow this assumption becomes

ρ̄ =
ρ

ρ0
=

(
P0

P

) 1
n

(9.48)

The power n depends on the gas properties.

Characteristics Values

Normally, the characteristics values are determined by physical values e.g. The
diameter of cylinder as a typical length. There are several situations where the char-
acteristic length, velocity, for example, are determined by the physical properties of
the fluid(s). The characteristic velocity can determined from U0 =

√
2P0/ρ. The

characteristic length can be determined from ratio of ` = ∆P/σ.

Example 9.12:
One idea of renewable energy is to use and to utilize the high concentration of of brine
water such as in the Salt Lake and the Salt Sea (in Israel). This process requires analysis
the mass transfer process. The governing equation is non–linear and this example pro-
vides opportunity to study nondimensionalizing of this kind of equation. The conversion
of the species yields a governing nonlinear equation14 for such process is

U0
∂CA

∂x
=

∂

∂y

DAB

(1−XA)
∂CA

∂y
(9.XII.a)
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Where the concentration, CA is defended as the molar density i.e. the number of moles
per volume. The molar fraction, XA is defined as the molar fraction of species A divide
by the total amount of material (in moles). The diffusivity coefficient, DAB is defined
as penetration of species A into the material. What are the units of the diffusivity
coefficient? The boundary conditions of this partial differential equation are given by

∂CA

∂y
(y = ∞) = 0 (9.XII.b)

CA(y = 0) = Ce (9.XII.c)

Where Ce is the equilibrium concentration. The initial condition is

CA(x = 0) = C0 (9.XII.d)

Select dimensionless parameters so that the governing equation and boundary and
initial condition can be presented in a dimensionless form. There is no need to discuss
the physical significance of the problem.

Solution

This governing equation requires to work with dimension associated with mass transfer
and chemical reactions, the “mole.” However, the units should not cause confusion or
fear since it appear on both sides of the governing equation. Hence, this unit will be
canceled. Now the units are compared to make sure that diffusion coefficient is kept
the units on both sides the same. From units point of view, equation (9.XII.a) can be
written (when the concentration is simply ignored) as

U︷︸︸︷
L

t

∂C
∂x︷︸︸︷
¡C
L

=

∂
∂y︷︸︸︷
1
L

DAB
(1−X)︷ ︸︸ ︷
DAB

1

∂C
∂y︷︸︸︷
¡C
L

(9.XII.e)

It can be noticed that X is unitless parameter because two same quantities are divided.

1
t

=
1
L2

DAB =⇒ DAB =
L2

t
(9.XII.f)

Hence the units of diffusion coefficient are typically given by
[
m2/sec

]
(it also can be

observed that based on Fick’s laws of diffusion it has the same units).
The potential of possibilities of dimensionless parameter is large. Typically, di-

mensionless parameters are presented as ratio of two quantities. In addition to that, in
heat and mass transfer (also in pressure driven flow etc.) the relative or reference to
certain point has to accounted for. The boundary and initial conditions here provides

14More information how this equation was derived can be found in Bar–Meir (Meyerson), Genick
“Hygroscopic absorption to falling films: The effects of the concentration level” M.S. Thesis Tel-Aviv
Univ. (Israel). Dept. of Fluid Mechanics and Heat Transfer 12/1991.
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the potential of the “driving force” for the mass flow or mass transfer. Hence, the
potential definition is

Φ =
CA − C0

Ce − C0
(9.XII.g)

With almost “standard” transformation

x =
x

`
y =

y

`
(9.XII.h)

Hence the derivative of Φ with respect to time is

∂Φ
∂x

=
∂

CA − C0

Ce − C0

∂
x

`

=
`

Ce − C0

∂

(
CA −½½>

0

C0

)

∂x
=

`

Ce − C0

∂CA

∂x
(9.XII.i)

In general a derivative with respect to x or y leave yields multiplication of `. Hence,
equation (9.XII.a) transformed into

U0
»»»»(Ce−C0)

`

∂Φ
∂x

= 1
`

∂

∂y

DAB

(1−XA)
»»»»»(Ce − C0)

`

∂Φ
∂y;U0

`

∂Φ
∂x

=
1
`2

∂

∂y

DAB

(1−XA)
∂Φ
∂y

(9.XII.j)

Equation (9.XII.j) like non–dimensionalized and proper version. However, the term XA,
while is dimensionless, is not proper. Yet, XA is a function of Φ because it contains
CA. Hence, this term, XA has to be converted or presented by Φ. Using the definition
of XA it can be written as

XA =
CA

C
= (Ce − C0)

CA − C0

Ce − C0

1
C

(9.XII.k)

Thus the transformation in equation (9.XII.l) another unexpected dimensionless pa-
rameter as

XA = Φ
Ce − C0

C
(9.XII.l)

Thus number, Ce−C0
C was not expected and it represent ratio of the driving force to the

height of the concentration which was not possible to attend by Buckingham’s method.
End Solution

9.4 Summary of Dimensionless Numbers
This section summarizes all the major dimensionless parameters which are commonly
used in the fluid mechanics field.
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Table -9.8. Common Dimensionless Parameters of Thermo–Fluid in the Field

Name Symbol Equation Interpretation Application

Archimedes
Number

Ar
g `3ρf (ρ− ρf )

µ2

buoyancy forces

viscous force
in nature and force
convection

Atwood
Number

A
(ρa − ρb)
ρa + ρb

buoyancy forces

“penetration” force

in stability of liq-
uid layer a over b
RayleighTaylor in-
stability etc.

Bond
Number

Bo
ρ g `2

σ

gravity forces

surface tension force
in open channel
flow, thin film flow

Brinkman
Number

Br
µU2

k ∆T

heat dissipation

heat conduction
during dissipation
problems

Capillary
Number

Ca
µU

σ

viscous force

surface tension force

For small Re and
surface tension in-
volve problem

Cauchy
Number

Cau
ρU2

E

inertia force

elastic force

For large Re and
surface tension in-
volve problem

Cavitation
Number

σ
Pl − Pv

1
2ρU2

pressure difference

inertia energy

pressure difference
to vapor pressure
to the potential
of phase change
(mostly to gas)

Courant
Number

Co
∆t U

∆x

wave distance

Typical Distance

A requirement
in numerical
schematic to
achieve stability)

Dean
Number

D
Re√
R/h

inertia forces

viscous deviation forces

related to radius of
channel with width
h stability

Deborah
Num-
ber15

De
tc
tp

stress relaxation time

observation time

the ratio of the
fluidity of mate-
rial primary used in
rheology

Drag Co-
efficient

CD
D

1
2 ρU2 A

drag force

inertia effects

Aerodynamics, hy-
drodynamics, note
this coefficient has
many definitions

Eckert
Number

Ec
U2

Cp ∆T

inertia effects

thermal effects
during dissipation
problems

Continued on next page
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Table -9.8. Common Dimensionless Parameters of Fluid Mechanics (continue)

Standard System

Name Symbol Equation Interpretation Application

Ekman
Number

Ek
ν

2`2 ω

viscous forces

Coriolis forces

geophysical flow
like atmospheric
flow

Euler
Number

Ec
P0 − P∞
Cp ∆T

pressure
potential effects

inertia effects
potential of resis-
tance problems

Froude
Number

Fr
U√
g `

inertia effects

gravitational effects
open channel flow
and two phase flow

Galileo
Number

Ga
ρ g `3

µ2

gravitational effects

viscous effects
open channel flow
and two phase flow

Grashof
Number

Gr
β ∆T g `3 ρ2

µ2

buoyancy effects

viscous effects
natural convection

Knudsen
Number

Kn
λ

`

LMFP

characteristic length

length of mean
free path, LMFP,
to characteristic
length

Laplace
Constant La

√
2 σ

g(ρ1 − ρ2)
surface force

gravity effects

liquid raise,
surface tension
problem, also
ref:Capillary
constant

Lift Coef-
ficient

CL
L

1
2 ρU2 A

lift force

inertia effects

Aerodynamics, hy-
drodynamics, note
this coefficient has
many definitions

Mach
Number

M
U

c

velocity

sound speed

compressibility
and propagation
of disturbances

Marangoni
Number

Ma − dσ

dT

` ∆T

να

“thermal” surface tension

viscous force

surface tension
caused by thermal
gradient

Morton
Number

Mo
gµ4

c ∆ρ

ρ2
cσ

3

viscous force

surface tension force
bubble and drop
flow

Ozer
Number

Oz
CD

2 Pmax
ρ

(Qmax
A )2

“maximum” supply

“maximum” demand

supply and de-
mand analysis
such pump & pipe
system, economy

Continued on next page
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Table -9.8. Common Dimensionless Parameters of Fluid Mechanics (continue)

Standard System

Name Symbol Equation Interpretation Application

Prandtl
Number

Pr
ν

α

viscous diffusion rate

thermal diffusion rate

Prandtl is fluid
property impor-
tant in flow due to
thermal forces

Reynolds
Number

Re
ρU `

µ

inertia forces

viscous forces
In most fluid me-
chanics issues

Rossby
Number

Ro
U

ω `0

inertia forces

Coriolis forces
In rotating fluids

Shear
Number

Sn
τc `c

µc Uc

actual shear

“potential” shear
shear flow

Stokes
Number

Stk
tp
tK

particle
relaxation

time

Kolmogorov time

In aerosol flow
dealing with
penetration of
particles

Strouhal
Number

St
ω `

U

“unsteady” effects

inertia effect

The effects of
natural or forced
frequency in all
the field that is
how much the
“unsteadiness” of
the flow is

Taylor
Number

Ta
ρ2 ωi

2 `4

µ4

centrifugal forces

viscous forces

Stability of rotat-
ing cylinders No-
tice ` has special
definition

Weber
Number

We
ρU2 `

σ

inertia force

surface tension force

For large Re and
surface tension in-
volve problem

The dimensional parameters that were used in the construction of the dimension-
less parameters in Table 9.8 are the characteristics of the system. Therefore there are
several definition of Reynolds number. In fact, in the study of the physical situations
often people refers to local Re number and the global Re number. Keeping this point
in mind, there several typical dimensions which need to be mentioned. The typical body
force is the gravity g which has a direction to center of Earth. The elasticity E in case
of liquid phase is BT , in case of solid phase is Young modulus. The typical length is
denoted as ` and in many cases it is referred to as the diameter or the radius. The

15This number is named by Reiner, M. (1964), “The Deborah Number”, Physics Today 17 (1): 62,
doi:10.1063/1.3051374. Reiner, a civil engineer who is considered the father of Rheology, named this
parameter because theological reasons perhaps since he was living in Israel.
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density, ρ is referred to the characteristic density or density at infinity. The area, A in
drag and lift coefficients is referred normally to projected area.

Fig. -9.4. Oscillating Von Karman
Vortex Street.

The frequency ω or f is referred to as the
“unsteadiness” of the system. Generally, the peri-
odic effect is enforced by the boundary conditions
or the initial conditions. In other situations, the
physics itself instores or forces periodic instability.
For example, flow around cylinder at first looks
like symmetrical situation. And indeed in a low
Reynolds number it is a steady state. However af-
ter a certain value of Reynolds number, vortexes are
created in an infinite parade and this phenomenon
is called Von Karman vortex street (see Figure 9.4)
which named after Von Karman. These vortexes
are created in a non–symmetrical way and hence
create an unsteady situation. When Reynolds num-
ber increases, these vortexes are mixed and the flow
becomes turbulent which, can be considered a steady state16.

The pressure P is the pressure at infinity or when the velocity is at rest. c is the
speed of sound of the fluid at rest or characteristic value. The value of the viscosity, µ
is typically some kind averaged value. The inability to define a fix value leads also to
new dimensionless numbers which represent the deviations of these properties.

9.4.1 The Significance of these Dimensionless Numbers

Reynolds number, named in the honor of Reynolds, represents the ratio of the momen-
tum forces to the viscous forces. Historically, this number was one of the first numbers
to be introduced to fluid mechanics. This number determines, in many cases, the flow
regime.

Example 9.13:
Eckert number17 determines whether the role of the momentum energy is transferred
to thermal energy is significant to affect the flow. This effect is important in situations
where high speed is involved. This fact suggests that Eckert number is related to Mach
number. Determine this relationship and under what circumstances this relationship is
true.

Solution

16This is an example where the more unsteady the situation becomes the situation can be analyzed
as a steady state because averages have a significant importance.

17This example is based on Bird, Lightfoot and Stuart “Transport Phenomena”.
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In Table 9.8 Mach and Eckert numbers are defined as

Ec =
U2

Cp ∆T
M =

U√
P

ρ

(9.XIII.a)

The material which obeys the ideal flow model18 (P/ρ = R T and P = C1 ρk) can be
written that

M = U

/√
P

ρ
=

U√
k R T

(9.XIII.b)

For the comparison, the reference temperature used to be equal to zero. Thus Eckert
number can be written as

√
Ec =

U√
Cp T

=
U√√√√√

(
R k

k − 1

)

︸ ︷︷ ︸
Cp

T

=
√

k − 1 U√
k R T

=
√

k − 1 M

(9.XIII.c)

The Eckert number and Mach number are related under ideal gas model and isentropic
relationship.

End Solution

Brinkman number measures of the importance of the viscous heating relative the
conductive heat transfer. This number is important in cases when a large velocity
change occurs over short distances such as lubricant, supersonic flow in rocket mechan-
ics creating large heat effect in the head due to large velocity (in many place it is a
combination of Eckert number with Brinkman number. The Mach number is based on
different equations depending on the property of the medium in which pressure distur-
bance moves through. Cauchy number and Mach number are related as well and see
Example 9.15 for explanation.

Example 9.14:
For historical reason some fields prefer to use certain numbers and not other ones.
For example in Mechanical engineers prefer to use the combination Re and We number
while Chemical engineers prefers to use the combination of Re and the Capillary number.
While in some instances this combination is justified, other cases it is arbitrary. Show
what the relationship between these dimensionless numbers.

Solution

The definitions of these number in Table 9.8

We =
ρU2 `

σ
Re =

ρU `

µ
Ca =

µ U

σ
=

U
σ

µ
(9.XIV.a)

18See for more details http://www.potto.org/gasDynamics/node70.html
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Dividing Weber number by Reynolds number yields

We

Re
=

ρU2 `

σ
ρU `

µ

=
U
σ

µ

= Ca (9.XIV.b)

End Solution

Euler number is named after Leonhard Euler (1707 1783), a German Physicist
who pioneered so many fields that it is hard to say what and where are his greatest
contributions. Eulers number and Cavitation number are essentially the same with
the exception that these numbers represent different driving pressure differences. This
difference from dimensional analysis is minimal. Furthermore, Euler number is referred
to as the pressure coefficient, Cp. This confusion arises in dimensional analysis because
historical reasons and the main focus area. The cavitation number is used in the study
of cavitation phenomena while Euler number is mainly used in calculation of resistances.

Example 9.15:
Explained under what conditions and what are relationship between the Mach number
and Cauchy number?

Solution

Cauchy number is defined as

Cau =
ρUUU2

E
(9.XV.a)

The square root of Cauchy number is

√
Cau =

U√
E

ρ

(9.XV.b)

In the liquid phase the speed of sound is approximated as

c =
E

ρ
(9.XV.c)

Using equation (9.XV.b) transforms equation (9.XV.a) into

√
Cau =

U

c
= M (9.49)

Thus the square root of Cau is equal to Mach number in the liquid phase. In the solid
phase equation (9.XV.c) is less accurate and speed of sound depends on the direction
of the grains. However, as first approximation, this analysis can be applied also to the
solid phase.

End Solution



9.4. SUMMARY OF DIMENSIONLESS NUMBERS 321

9.4.2 Relationship Between Dimensionless Numbers

The Dimensionless numbers since many of them have formulated in a certain field
tend to be duplicated. For example, the Bond number is referred in Europe as Eotvos
number. In addition to the above confusion, many dimensional numbers expressed the
same things under certain conditions. For example, Mach number and Eckert Number
under certain circumstances are same.

Example 9.16:
Galileo Number is a dimensionless number which represents the ratio of gravitational
forces and viscous forces in the system as

Ga =
ρ2 g `3

µ2
(9.XVI.a)

The definition of Reynolds number has viscous forces and the definition of Froude
number has gravitational forces. What are the relation between these numbers?

Example 9.17:
Laplace Number is another dimensionless number that appears in fluid mechanics which
related to Capillary number. The Laplace number definition is

La =
ρ σ `

µ2
(9.XVII.a)

Show what are the relationships between Reynolds number, Weber number and Laplace
number.

Example 9.18:
The Rotating Froude Number is a somewhat a similar number to the regular Froude
number. This number is defined as

FrR =
ω2 `

g
(9.XVIII.a)

What is the relationship between two Froude numbers?

Example 9.19:
Ohnesorge Number is another dimensionless parameter that deals with surface tension
and is similar to Capillary number and it is defined as

Oh =
µ√
ρ σ `

(9.XIX.a)

Defined Oh in term of We and Re numbers.
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9.4.3 Examples for Dimensional Analysis

Example 9.20:
The similarity of pumps is determined by comparing several dimensional numbers among
them are Reynolds number, Euler number, Rossby number etc. Assume that the only
numbers which affect the flow are Reynolds and Euler number. The flow rate of the
imaginary pump is 0.25 [m3/sec] and pressure increase for this flow rate is 2 [Bar] with
2500 [kw]. Due to increase of demand, it is suggested to replace the pump with a 4
times larger pump. What is the new estimated flow rate, pressure increase, and power
consumption?

Solution

It provided that the Reynolds number controls the situation. The density and viscosity
remains the same and hence

Rem = Rep =⇒ Um Dm = Up Dp =⇒ Up =
Dm

DP
Um (9.XX.a)

It can be noticed that initial situation is considered as the model and while the new
pump is the prototype. The new flow rate, Q, depends on the ratio of the area and
velocity as

Qp

Qm
=

Ap Up

Am Um
=⇒ Qp = Qm

Ap Up

Am Um
= Qm

Dp
2 Up

Dm
2 Um

(9.XX.b)

Thus the prototype flow rate is

Qp = Qm

(
Dp

Dm

)3

= 0.25× 43 = 16
[

m3

sec

]
(9.XX.c)

The new pressure is obtain by comparing the Euler number as

Eup = Eum =⇒
(

∆P
1
2ρU2

)

p

=
(

∆P
1
2ρU2

)

m

(9.XX.d)

Rearranging equation (9.XX.d) provides

(∆P )p

(∆P )m

=

(
¢ρU2

)
p

(¢ρU2)m

=

(
U2

)
p

(U2)m

(9.XX.e)

Utilizing equation (9.XX.a)

∆Pp = ∆Pm

(
Dp

Dm

)2

(9.XX.f)

The power can be obtained from the following

Ẇ =
F `

t
= F U = P A U (9.XX.g)
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In this analysis, it is assumed that pressure is uniform in the cross section. This
assumption is appropriate because only the secondary flows in the radial direction (to
be discussed in this book section on pumps.). Hence, the ratio of power between the
two pump can be written as

Ẇp

Ẇm

=
(P A U)p

(P A U)m

(9.XX.h)

Utilizing equations above in this ratio leads to

Ẇp

Ẇm

=

Pp/Pm︷ ︸︸ ︷(
Dp

Dm

)2

Ap/Am︷ ︸︸ ︷(
Dp

Dm

)2

Up/Um︷ ︸︸ ︷(
Dp

Dm

)
=

(
Dp

Dm

)5 (9.XX.i)

End Solution

Example 9.21:
The flow resistance to flow of the water in a pipe is to be simulated by flow of air.
Estimate the pressure loss ratio if Reynolds number remains constant. This kind of study
appears in the industry in which the compressibility of the air is ignored. However, the
air is a compressible substance that flows the ideal gas model. Water is a substance that
can be considered incompressible flow for relatively small pressure change. Estimate the
error using the averaged properties of the air.

Solution

For the first part, the Reynolds number is the single controlling parameter which affects
the pressure loss. Thus it can be written that the Euler number is function of the
Reynolds number.

Eu = f(Re) (9.XXI.a)

Thus, to have a similar situation the Reynolds and Euler have to be same.

Rep = Rem Eum = Eup (9.XXI.b)

Hence,
Um

Up
=

`p

`m

ρ

ρm

µp

µm
(9.XXI.c)

and for Euler number
∆Pm

∆Pp
=

ρm

ρp

Um

Up
(9.XXI.d)

and utilizing equation (9.XXI.c) yields

∆Pm

∆Pp
=

(
`p

`m

)2 (
µm

µp

)2 (
ρp

ρm

)
(9.XXI.e)
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Inserting the numerical values results in

∆Pm

∆Pp
= 1× 1000× (9.XXI.f)

It can be noticed that the density of the air changes considerably hence the
calculations produce a considerable error which can render the calculations useless (a
typical problem of Buckingham’s method). Assuming a new variable that effect the
problem, air density variation. If that variable is introduced into problem, air can be
used to simulate water flow. However as a first approximation, the air properties are
calculated based on the averaged values between the entrance and exit values. If the
pressure reduction is a function of pressure reduction (iterative process).

to be continue
End Solution

Example 9.22:
A device operating on a surface of a liquid to study using a model with a ratio 1:20.
What should be ratio of kinematic viscosity between the model and prototype so that
Froude and Reynolds numbers remain the same. Assume that body force remains the
same and velocity is reduced by half.

Solution

The requirement is that Reynolds

Rem = Rp =⇒
(

U `

ν

)

p

=
(

U `

ν

)

m

(9.XXII.a)

The Froude needs to be similar so

Frm = Frp =⇒
(

U√
g `

)

p

=
(

U `

ν

)

m

(9.XXII.b)

dividing equation (9.XXII.a) by equation (9.XXII.b) results in
(

U `

ν

)

p

/

(
U√
g `

)

p

=
(

U `

ν

)

m

/

(
U√
g `

)

m

(9.XXII.c)

or (
`
√

g `

ν

)

p

=
(

`
√

g `

ν

)

m

(9.XXII.d)

If the body force19, g, The kinematic viscosity ratio is then

νp

νm
=

(
`m

`p

)3/2

= (1/20)3/2 (9.XXII.e)

19The body force does not necessarily have to be the gravity.
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It can be noticed that this can be achieved using Ohnesorge Number like this presen-
tation.

End Solution

9.5 Summary
The two dimensional analysis methods or approaches were presented in this chapter.
Buckingham’s π technique is a quick “fix approach” which allow rough estimates and
relationship between model and prototype. Nusselt’s approach provides an heavy duties
approach to examine what dimensionless parameters effect the problem. It can be shown
that these two techniques in some situations provide almost similar solution. In other
cases, these technique proves different and even conflicting results. The dimensional
analysis technique provides a way to simplify models (solving the governing equation by
experimental means) and to predict effecting parameters.

9.6 Appendix summary of Dimensionless Form of Navier–
Stokes Equations

In a vector form Navier–Stokes equations can be written and later can be transformed
into dimensionless form which will yield dimensionless parameters. First, the typical
or characteristics values of scaling parameters has to be presented and appear in the
following table

Parameter Symbol Parameter Description Units

h characteristic length [L]

U0 characteristic velocity

[
L

t

]

f characteristic frequency

[
1
t

]

ρ0 characteristic density

[
M

L3

]

Pmax − P∞ maximum pressure drive

[
M

Lt2

]

Basic non–dimensional form of the parameters

t̃ = ft r̃rr =
~rrr

h
ŨUU =

~UUU

U0

P̃PP =
PPP − P∞

Pmax − P∞
∇̃ = h ∇ ρ̃ =

ρ

ρ0

(9.50)
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For the Continuity Equation (8.17) for non–compressible substance can be trans-
formed into

¢
¢
¢̧
0

∂ρ

∂t
+∇ · (ρ̃UUU) = 0 (9.51)

For the N-S equation, every additive term has primary dimensions m1L−2t−2.
To non nondimensionalization, we multiply every term by L/(V 2), which has primary
dimensions m−1L2t2, so that the dimensions cancel.

Using these definitions equation (8.111) results in

f h

U0

∂ŨUU

∂t̃
+

(
ŨUU · ∇̃

)
ŨUU = −

(
Pmax − P∞

ρŨUU

)
∇̃P̃PP +

1

ŨUU
2

g h

~fg +
1

ρŨUU h

µ

∇̃2
ŨUU (9.52)

Or after using the definition of the dimensionless parameters as

St
∂ŨUU

∂t̃
+

(
ŨUU · ∇̃

)
ŨUU = −Eu∇̃P̃PP +

1
Fr2

~fg +
1

Re
∇̃2

ŨUU (9.53)

The definition of Froude number is not consistent in the literature. In some places Fr
is defined as the square of Fr = U2/g h.

The Strouhal number is named after Vincenz Strouhal (1850 1922), who used
this parameter in his study of “singing wires.” This parameter is important in unsteady,
oscillating flow problems in which the frequency of the oscillation is important.

Example 9.23:
A device is accelerated linearly by a constant value BBB. Write a new N–S and continuity
equations for incompressible substance in the a coordinate system attached to the body.
Using these equations developed new dimensionless equations so the new “Froude num-
ber” will contain or “swallow” by the new acceleration. Measurement has shown that
the acceleration to be constant with small sinusoidal on top the constant such away as

aaa = BBB + ε sin
(

f

2 π

)
(9.XXIII.a)

Suggest a dimensionless parameter that will take this change into account.

Supplemental Problems
1. An airplane wing of chord length 3 [m] moves through still air at 15◦Cand 1 [Bar]

and at at a speed of 15 [m/sec]. What is the air velocity for a 1:20 scale model
to achieve dynamic similarity between model and prototype? Assume that in the
model the air has the same pressure and temperature as that in prototype. If the



9.6. APPENDIX SUMMARY OF DIMENSIONLESS FORM OF NAVIER–STOKES EQUATIONS327

air is considered as compressible, what velocity is required for pressure is 1.5[bar]
and temperature 20◦C? What is the required velocity of the air in the model test
when the medium is made of water to keep the dynamic similarity?

2. An airplane 100[m] long is tested by 1 [m] model. If the airplane velocity is
120 [m] and velocity at the wind–tunnel is 60 [m], calculate the model and the
airplane Reynolds numbers. You can assume that both model and prototype
working conditions are the same (1[Bar] and 60◦C).

3. What is the pipe diameter for oil flowing at speed of 1[m/sec] to obtain dynamic
similarity with a pipe for water flowing at 3 [m/sec] in a 0.02[m] pipe. State your
assumptions.

4. The pressure drop for water flowing at 1 [m/sec] in a pipe was measured to be
1 [Bar]. The pipe is 0.05 [m] diameter and 100 [m] in length. What should be
velocity of Castor oil to get the same Reynolds number? What would be pressure
drop in that case?
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CHAPTER 10

Multi–Phase Flow

10.1 Introduction
Traditionally, the topic of multi–phase flow is ignored in an introductory class on fluid
mechanics. For many engineers, this class will be the only opportunity to be exposed
to this topic. The knowledge in this topic without any doubts, is required for many
engineering problems. Calculations of many kinds of flow deals with more than one
phase or material flow1. The author believes that the trends and effects of multiphase
flow could and should be introduced and considered by engineers. In the past, books
on multiphase flow were written more as a literature review or heavy on the mathe-
matics. It is recognized that multiphase flow is still evolving. In fact, there is not a
consensus to the exact map of many flow regimes. This book attempts to describe
these issues as a fundamentals of physical aspects and less as a literature review. This
chapter provides information that is more or less in consensus2. Additionally, the nature
of multiphase flow requires solving many equations. Thus, in many books the repre-
sentations is by writing the whole set governing equations. Here, it is believed that the
interactions/calculations requires a full year class and hence, only the trends and simple
calculations are described.

10.2 History
The study of multi–phase flow started for practical purposes after World War II. Initially
the models were using simple assumptions. For simple models,there are two possibilities
(1) the fluids/materials are flowing in well homogeneous mixed (where the main problem

1An example, there was a Ph.D. working for the government who analyzed filing cavity with liquid
metal (aluminum), who did not consider the flow as two–phase flow and ignoring the air. As result,
his analysis is in the twilight zone not in the real world.

2Or when the scientific principles simply dictate.
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to find the viscosity), (2) the fluids/materials are flowing separately where the actual
total loss pressure can be correlated based on the separate pressure loss of each of
the material. If the pressure loss was linear then the total loss will be the summation
of the two pressure losses (of the lighter liquid (gas) and the heavy liquid). Under
this assumption the total is not linear and experimental correlation was made. The
flow patterns or regimes were not considered. This was suggested by Lockhart and
Martinelli who use a model where the flow of the two fluids are independent of each
other. They postulate that there is a relationship between the pressure loss of a single
phase and combine phases pressure loss as a function of the pressure loss of the other
phase. It turned out this idea provides a good crude results in some cases.

Researchers that followed Lockhart and Martinelli looked for a different map for
different combination of phases. When it became apparent that specific models were
needed for different situations, researchers started to look for different flow regimes
and provided different models. Also the researchers looked at the situation when the
different regimes are applicable. Which leads to the concept of flow regime maps.
Taitle and Duckler suggested a map based on five non-dimensional groups which are
considered as the most useful today. However, Taitle and Duckler’s map is not universal
and it is only applied to certain liquid–gas conditions. For example, Taitle–Duckler’s
map is not applicable for microgravity.

10.3 What to Expect From This Chapter

As oppose to the tradition of the other chapters in this book and all other Potto project
books, a description of what to expect in this chapter is provided. It is an attempt
to explain and convince all the readers that the multi–phase flow must be included
in introductory class on fluid mechanics3. Hence, this chapter will explain the core
concepts of the multiphase flow and their relationship, and importance to real world.

This chapter will provide: a category of combination of phases, the concept of
flow regimes, multi–phase flow parameters definitions, flow parameters effects on the
flow regimes, partial discussion on speed of sound of different regimes, double chok-
ing phenomenon (hopefully), and calculation of pressure drop of simple homogeneous
model. This chapter will introduce these concepts so that the engineer not only be able
to understand a conversation on multi-phase but also, and more importantly, will know
and understand the trends. However, this chapter will not provide a discussion of tran-
sient problems, phase change or transfer processes during flow, and actual calculation
of pressure of the different regimes.
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Fig. -10.1. Different fields of multi phase flow.

10.4 Kind of Multi-Phase Flow

All the flows are a form of multiphase flow. The discussion in the previous chapters is
only as approximation when multiphase can be “reduced” into a single phase flow. For
example, consider air flow that was discussed and presented earlier as a single phase
flow. Air is not a pure material but a mixture of many gases. In fact, many proprieties
of air are calculated as if the air is made of well mixed gases of Nitrogen and Oxygen.
The results of the calculations of a mixture do not change much if it is assumed that the
air flow as stratified flow 4 of many concentration layers (thus, many layers (infinite) of
different materials). Practically for many cases, the homogeneous assumption is enough
and suitable. However, this assumption will not be appropriate when the air is stratified
because of large body forces, or a large acceleration. Adopting this assumption might
lead to a larger error. Hence, there are situations when air flow has to be considered as
multiphase flow and this effect has to be taken into account.

In our calculation, it is assumed that air is made of only gases. The creation

3This author feels that he is in an unique position to influence many in the field of fluid mechanics.
This fact is due to the shear number of the downloaded Potto books. The number of the downloads
of the book on Fundamental of compressible flow has exceed more than 100,000 in about two and half
years. It also provides an opportunity to bring the latest advances in the fields since this author does
not need to “sell” the book to a publisher or convince a “committee.”

4Different concentration of oxygen as a function of the height. While the difference of the concen-
tration between the top to button is insignificant, nonetheless it exists.
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of clean room is a proof that air contains small particles. In almost all situations, the
cleanness of the air or the fact that air is a mixture is ignored. The engineering accuracy
is enough to totally ignore it. Yet, there are situations where cleanness of the air can
affect the flow. For example, the cleanness of air can reduce the speed of sound. In
the past, the breaks in long trains were activated by reduction of the compressed line
(a patent no. 360070 issued to George Westinghouse, Jr., March 29, 1887). In a four
(4) miles long train, the breaks would started to work after about 20 seconds in the last
wagon. Thus, a 10% change of the speed of sound due to dust particles in air could
reduce the stopping time by 2 seconds (50 meter difference in stopping) and can cause
an accident.

One way to categorize the multiphase is by the materials flows, For example, the
flow of oil and water in one pipe is a multiphase flow. This flow is used by engineers
to reduce the cost of moving crude oil through a long pipes system. The “average”
viscosity is meaningless since in many cases the water follows around the oil. The
water flow is the source of the friction. However, it is more common to categorize
the flow by the distinct phases that flow in the tube. Since there are three phases,
they can be solid–liquid, solid–gas, liquid–gas and solid–liquid–gas flow. This notion
eliminates many other flow categories that can and should be included in multiphase
flow. This category should include any distinction of phase/material. There are many
more categories, for example, sand and grain (which are “solids”) flow with rocks and
is referred to solid–solid flow. The category of liquid–gas should be really viewed as the
extreme case of liquid-liquid where the density ratio is extremely large. The same can
be said for gas–gas flow. For the gas, the density is a strong function of the temperature
and pressure. Open Channel flow is, although important, is only an extreme case of
liquid-gas flow and is a sub category of the multiphase flow.

The multiphase is an important part of many processes. The multiphase can
be found in nature, living bodies (bio–fluids), and industries. Gas–solid can be found
in sand storms, and avalanches. The body inhales solid particle with breathing air.
Many industries are involved with this flow category such as dust collection, fluidized
bed, solid propellant rocket, paint spray, spray casting, plasma and river flow with live
creatures (small organisms to large fish) flow of ice berg, mud flow etc. The liquid–solid,
in nature can be blood flow, and river flow. This flow also appears in any industrial
process that are involved in solidification (for example die casting) and in moving solid
particles. Liquid–liquid flow is probably the most common flow in the nature. Flow of
air is actually the flow of several light liquids (gases). Many natural phenomenon are
multiphase flow, for an example, rain. Many industrial process also include liquid-liquid
such as painting, hydraulic with two or more kind of liquids.

10.5 Classification of Liquid-Liquid Flow Regimes

The general discussion on liquid–liquid will be provided and the gas–liquid flow will
be discussed as a special case. Generally, there are two possibilities for two different
materials to flow (it is also correct for solid–liquid and any other combination). The
materials can flow in the same direction and it is referred as co–current flow. When the
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materials flow in the opposite direction, it is referred as counter–current. In general,
the co-current is the more common. Additionally, the counter–current flow must have
special configurations of long length of flow. Generally, the counter–current flow has a
limited length window of possibility in a vertical flow in conduits with the exception of
magnetohydrodynamics. The flow regimes are referred to the arrangement of the fluids.

The main difference between the liquid–liquid flow to gas-liquid flow is that gas
density is extremely lighter than the liquid density. For example, water and air flow as
oppose to water and oil flow. The other characteristic that is different between the gas
flow and the liquid flow is the variation of the density. For example, a reduction of the
pressure by half will double the gas volumetric flow rate while the change in the liquid
is negligible. Thus, the flow of gas–liquid can have several flow regimes in one situation
while the flow of liquid–liquid will (probably) have only one flow regime.

10.5.1 Co–Current Flow

In Co–Current flow, two liquids can have three main categories: vertical, horizontal,
and what ever between them. The vertical configuration has two cases, up or down.
It is common to differentiate between the vertical (and near vertical) and horizontal
(and near horizontal). There is no exact meaning to the word “near vertical” or “near
horizontal” and there is no consensus on the limiting angles (not to mention to have
limits as a function with any parameter that determine the limiting angle). The flow
in inclined angle (that not covered by the word “near”) exhibits flow regimes not much
different from the other two. Yet, the limits between the flow regimes are considerably
different. This issue of incline flow will not be covered in this chapter.

10.5.1.1 Horizontal Flow

Heavy Liquid

Light Liquid

Fig. -10.2. Stratified flow in horizontal tubes
when the liquids flow is very slow.

The typical regimes for horizontal flow
are stratified flow (open channel flow,
and non open channel flow), dispersed
bubble flow, plug flow, and annular flow.
For low velocity (low flow rate) of the
two liquids, the heavy liquid flows on the
bottom and lighter liquid flows on the
top5 as depicted in Figure 10.2. This
kind of flow regime is referred to as horizontal flow. When the flow rate of the lighter
liquid is almost zero, the flow is referred to as open channel flow. This definition (open
channel flow) continues for small amount of lighter liquid as long as the heavier flow can
be calculated as open channel flow (ignoring the lighter liquid). The geometries (even
the boundaries) of open channel flow are very diverse. Open channel flow appears in
many nature (river) as well in industrial process such as the die casting process where
liquid metal is injected into a cylinder (tube) shape. The channel flow will be discussed
in a greater detail in Open Channel Flow chapter.

5With the exception of the extremely smaller diameter where Rayleigh–Taylor instability is an im-
portant issue.
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As the lighter liquid (or the gas phase) flow rate increases (superficial velocity),
the friction between the phases increase. The superficial velocity is referred to as the
velocity that any phase will have if the other phase was not exist. This friction is one of
the cause for the instability which manifested itself as waves and changing the surface
from straight line to a different configuration (see Figure 10.3). The wave shape is
created to keep the gas and the liquid velocity equal and at the same time to have
shear stress to be balance by surface tension. The configuration of the cross section
not only depend on the surface tension, and other physical properties of the fluids but
also on the material of the conduit.

Light Liquid

Heavy Liquid

Light Liquid

Heavy Liquid

Fig. -10.3. Kind of Stratified flow in
horizontal tubes.

As the lighter liquid velocity increases two
things can happen (1) wave size increase and (2)
the shape of cross section continue to deform.
Some referred to this regime as wavy stratified flow
but this definition is not accepted by all as a cat-
egory by itself. In fact, all the two phase flow are
categorized by wavy flow which will proven later.
There are two paths that can occur on the heavier
liquid flow rate. If the heavier flow rate is small,
then the wave cannot reach to the crown and the shape is deformed to the point that
all the heavier liquid is around the periphery. This kind of flow regime is referred to as
annular flow. If the heavier liquid flow rate is larger6 than the distance, for the wave
to reach the conduit crown is smaller. At some point, when the lighter liquid flow
increases, the heavier liquid wave reaches to the crown of the pipe. At this stage, the
flow pattern is referred to as slug flow or plug flow. Plug flow is characterized by regions
of lighter liquid filled with drops of the heavier liquid with Plug (or Slug) of the heavier
liquid (with bubble of the lighter liquid). These plugs are separated by large “chunks”
that almost fill the entire tube. The plugs are flowing in a succession (see Figure 10.4).
The pressure drop of this kind of regime is significantly larger than the stratified flow.
The slug flow cannot be assumed to be as homogeneous flow nor it can exhibit some
average viscosity. The “average” viscosity depends on the flow and thus making it as
insignificant way to do the calculations. Further increase of the lighter liquid flow rate
move the flow regime into annular flow. Thus, the possibility to go through slug flow
regime depends on if there is enough liquid flow rate.

Heavy Liquid

Light Liquid

Fig. -10.4. Plug flow in horizontal tubes when
the liquids flow is faster.

Choking occurs in compressible
flow when the flow rate is above a cer-
tain point. All liquids are compressible
to some degree. For liquid which the
density is a strong and primary function
of the pressure, choking occurs relatively
closer/sooner. Thus, the flow that starts
as a stratified flow will turned into a slug
flow or stratified wavy7 flow after a certain distance depends on the heavy flow rate (if

6The liquid level is higher.
7Well, all the flow is wavy, thus it is arbitrary definition.
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this category is accepted). After a certain distance, the flow become annular or the flow
will choke. The choking can occur before the annular flow regime is obtained depend-
ing on the velocity and compressibility of the lighter liquid. Hence, as in compressible
flow, liquid–liquid flow has a maximum combined of the flow rate (both phases). This
maximum is known as double choking phenomenon.

The reverse way is referred to the process where the starting point is high flow
rate and the flow rate is decreasing. As in many fluid mechanics and magnetic fields,
the return path is not move the exact same way. There is even a possibility to return on
different flow regime. For example, flow that had slug flow in its path can be returned
as stratified wavy flow. This phenomenon is refer to as hysteresis.

Flow that is under small angle from the horizontal will be similar to the horizontal
flow. However, there is no consensus how far is the “near” means. Qualitatively, the
“near” angle depends on the length of the pipe. The angle decreases with the length
of the pipe. Besides the length, other parameters can affect the “near.”
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Fig. -10.5. Modified Mandhane map for flow regime in horizontal tubes.

The results of the above discussion are depicted in Figure 10.5. As many things in
multiphase, this map is only characteristics of the “normal” conditions, e.g. in normal
gravitation, weak to strong surface tension effects (air/water in “normal” gravity), etc.

10.5.1.2 Vertical Flow

The vertical flow has two possibilities, with the gravity or against it. In engineering
application, the vertical flow against the gravity is more common used. There is a dif-
ference between flowing with the gravity and flowing against the gravity. The buoyancy
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Fig. -10.6. Gas and liquid in Flow in verstical tube against the gravity.

is acting in two different directions for these two flow regimes. For the flow against
gravity, the lighter liquid has a buoyancy that acts as an “extra force” to move it faster
and this effect is opposite for the heavier liquid. The opposite is for the flow with grav-
ity. Thus, there are different flow regimes for these two situations. The main reason
that causes the difference is that the heavier liquid is more dominated by gravity (body
forces) while the lighter liquid is dominated by the pressure driving forces.

Flow Against Gravity

For vertical flow against gravity, the flow cannot start as a stratified flow. The
heavier liquid has to occupy almost the entire cross section before it can flow because
of the gravity forces. Thus, the flow starts as a bubble flow. The increase of the lighter
liquid flow rate will increase the number of bubbles until some bubbles start to collide.
When many bubbles collide, they create a large bubble and the flow is referred to as
slug flow or plug flow (see Figure 10.6). Notice, the different mechanism in creating
the plug flow in horizontal flow compared to the vertical flow.

Further increase of lighter liquid flow rate will increase the slug size as more
bubbles collide to create “super slug”; the flow regime is referred as elongated bubble
flow. The flow is less stable as more turbulent flow and several “super slug” or churn
flow appears in more chaotic way, see Figure 10.6. After additional increase of “super
slug” , all these “elongated slug” unite to become an annular flow. Again, it can be
noted the difference in the mechanism that create annular flow for vertical and horizontal
flow. Any further increase transforms the outer liquid layer into bubbles in the inner
liquid. Flow of near vertical against the gravity in two–phase does not deviate from
vertical. The choking can occur at any point depends on the fluids and temperature
and pressure.
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10.5.1.3 Vertical Flow Under Micro Gravity
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Fig. -10.7. A dimensional vertical flow map
under very low gravity against the gravity.

The above discussion mostly explained the
flow in a vertical configuration when the
surface tension can be neglected. In cases
where the surface tension is very important.
For example, out in space between gas and
liquid (large density difference) the situa-
tion is different. The flow starts as dis-
persed bubble (some call it as “gas con-
tinuous”) because the gas phase occupies
most of column. The liquid flows through
a trickle or channeled flow that only par-
tially wets part of the tube. The interaction
between the phases is minimal and can be
considered as the “open channel flow” of
the vertical configuration. As the gas flow
increases, the liquid becomes more turbu-
lent and some parts enter into the gas phase as drops. When the flow rate of the gas
increases further, all the gas phase change into tiny drops of liquid and this kind of
regime referred to as mist flow. At a higher rate of liquid flow and a low flow rate of
gas, the regime liquid fills the entire void and the gas is in small bubble and this flow
referred to as bubbly flow. In the medium range of the flow rate of gas and liquid,
there is pulse flow in which liquid is moving in frequent pulses. The common map is
based on dimensionless parameters. Here, it is presented in a dimension form to explain
the trends (see Figure 10.7). In the literature, Figure 10.7 presented in dimensionless
coordinates. The abscissa is a function of combination of Froude ,Reynolds, and Weber
numbers. The ordinate is a combination of flow rate ratio and density ratio.

Flow With The Gravity

As opposed to the flow against gravity, this flow can starts with stratified flow. A
good example for this flow regime is a water fall. The initial part for this flow is more
significant. Since the heavy liquid can be supplied from the “wrong” point/side, the
initial part has a larger section compared to the flow against the gravity flow. After the
flow has settled, the flow continues in a stratified configuration. The transitions between
the flow regimes is similar to stratified flow. However, the points where these transitions
occur are different from the horizontal flow. While this author is not aware of an actual
model, it must be possible to construct a model that connects this configuration with
the stratified flow where the transitions will be dependent on the angle of inclinations.

10.6 Multi–Phase Flow Variables Definitions

Since the gas–liquid system is a specific case of the liquid–liquid system, both will be
united in this discussion. However, for the convenience of the terms “gas and liquid”
will be used to signify the lighter and heavier liquid, respectively. The liquid–liquid (also
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gas–liquid) flow is an extremely complex three–dimensional transient problem since the
flow conditions in a pipe may vary along its length, over its cross section, and with
time. To simplify the descriptions of the problem and yet to retain the important
features of the flow, some variables are defined so that the flow can be described as
a one-dimensional flow. This method is the most common and important to analyze
two-phase flow pressure drop and other parameters. Perhaps, the only serious missing
point in this discussion is the change of the flow along the distance of the tube.

10.6.1 Multi–Phase Averaged Variables Definitions

The total mass flow rate through the tube is the sum of the mass flow rates of the two
phases

ṁ = ṁG + ṁL (10.1)

It is common to define the mass velocity instead of the regular velocity because the
“regular” velocity changes along the length of the pipe. The gas mass velocity is

GG =
ṁG

A
(10.2)

Where A is the entire area of the tube. It has to be noted that this mass velocity does
not exist in reality. The liquid mass velocity is

GL =
ṁL

A
(10.3)

The mass flow of the tube is then

G =
ṁ

A
(10.4)

It has to be emphasized that this mass velocity is the actual velocity.
The volumetric flow rate is not constant (since the density is not constant) along

the flow rate and it is defined as

QG =
GG

ρG
= UsG (10.5)

and for the liquid

QL =
GL

ρL
(10.6)

For liquid with very high bulk modulus (almost constant density), the volumetric flow
rate can be considered as constant. The total volumetric volume vary along the tube
length and is

Q = QL + QG (10.7)
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Ratio of the gas flow rate to the total flow rate is called the ’quality’ or the “dryness
fraction” and is given by

X =
ṁG

ṁ
=

GG

G
(10.8)

In a similar fashion, the value of (1 − X) is referred to as the “wetness fraction.”
The last two factions remain constant along the tube length as long the gas and liquid
masses remain constant. The ratio of the gas flow cross sectional area to the total cross
sectional area is referred as the void fraction and defined as

α =
AG

A
(10.9)

This fraction is vary along tube length since the gas density is not constant along the
tube length. The liquid fraction or liquid holdup is

LH = 1− α =
AL

A
(10.10)

It must be noted that Liquid holdup, LH is not constant for the same reasons the void
fraction is not constant.

The actual velocities depend on the other phase since the actual cross section the
phase flows is dependent on the other phase. Thus, a superficial velocity is commonly
defined in which if only one phase is using the entire tube. The gas superficial velocity
is therefore defined as

UsG =
GG

ρG
=

X ṁ

ρG A
= QG (10.11)

The liquid superficial velocity is

UsL =
GL

ρL
=

(1−X) ṁ

ρL A
= QL (10.12)

Since UsL = QL and similarly for the gas then

Um = UsG + UsL (10.13)

Where Um is the averaged velocity. It can be noticed that Um is not constant along
the tube.

The average superficial velocity of the gas and liquid are different. Thus, the ratio
of these velocities is referred to as the slip velocity and is defined as the following

SLP =
UG

UL
(10.14)

Slip ratio is usually greater than unity. Also, it can be noted that the slip velocity is
not constant along the tube.
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For the same velocity of phases (SLP = 1), the mixture density is defined as

ρm = α ρG + (1− α) ρL (10.15)

This density represents the density taken at the “frozen” cross section (assume the
volume is the cross section times infinitesimal thickness of dx).

The average density of the material flowing in the tube can be evaluated by
looking at the definition of density. The density of any material is defined as ρ = m/V
and thus, for the flowing material it is

ρ =
ṁ

Q
(10.16)

Where Q is the volumetric flow rate. Substituting equations (10.1) and (10.7) into
equation (10.16) results in

ρaverage =

ṁG︷︸︸︷
X ṁ +

ṁL︷ ︸︸ ︷
(1−X) ṁ

QG + QL
=

X ṁ + (1−X) ṁ

X ṁ

ρG︸ ︷︷ ︸
QG

+
(1−X) ṁ

ρL︸ ︷︷ ︸
QL

(10.17)

Equation (10.17) can be simplified by canceling the ṁ and noticing the (1−X)+X = 1
to become

ρaverage =
1

X
ρG

+ (1−X)
ρL

(10.18)

The average specific volume of the flow is then

vaverage =
1

ρaverage
=

X

ρG
+

(1−X)
ρL

= X vG + (1−X) vL (10.19)

The relationship between X and α is

X =
ṁG

ṁG + ṁL
=

ρG UG

AG︷︸︸︷
Aα

ρLUL A(1− α)︸ ︷︷ ︸
AL

+ρG UG Aα
=

ρG UG α

ρLUL(1− α) + ρG UG α
(10.20)

If the slip is one SLP = 1, thus equation (10.20) becomes

X =
ρG α

ρL(1− α) + ρG α
(10.21)
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10.7 Homogeneous Models
Before discussing the homogeneous models, it is worthwhile to appreciate the complexity
of the flow. For the construction of fluid basic equations, it was assumed that the flow
is continuous. Now, this assumption has to be broken, and the flow is continuous
only in many chunks (small segments). Furthermore, these segments are not defined
but results of the conditions imposed on the flow. In fact, the different flow regimes
are examples of typical configuration of segments of continuous flow. Initially, it was
assumed that the different flow regimes can be neglected at least for the pressure loss
(not correct for the heat transfer). The single phase was studied earlier in this book
and there is a considerable amount of information about it. Thus, the simplest is to
used it for approximation.

The average velocity (see also equation (10.13)) is

Um =
QL + QG

A
= UsL + UsG = Um (10.22)

It can be noted that the continuity equation is satisfied as

ṁ = ρm Um A (10.23)

Example 10.1:
Under what conditions equation (10.23) is correct?

Solution

Under construction
End Solution

The governing momentum equation can be approximated as

ṁ
dUm

dx
= −A

dP

dx
− S τw −A ρm g sin θ (10.24)

or modifying equation (10.24) as

−dP

dx
= −S

A
τw − ṁ

A

dUm

dx
+ ρm g sin θ (10.25)

The energy equation can be approximated as

dq

dx
− dw

dx
= ṁ

d

dx

(
hm +

Um
2

2
+ g x sin θ

)
(10.26)
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10.7.1 Pressure Loss Components

In a tube flowing upward in incline angle θ, the pressure loss is affected by friction loss,
acceleration, and body force(gravitation). These losses are non-linear and depend on
each other. For example, the gravitation pressure loss reduce the pressure and thus the
density must change and hence, acceleration must occur. However, for small distances
(dx) and some situations, this dependency can be neglected. In that case, from equation
(10.25), the total pressure loss can be written as

dP

dx
=

friction︷ ︸︸ ︷
dP

dx

∣∣∣∣
f

+

acceleration︷ ︸︸ ︷
dP

dx

∣∣∣∣
a

+

gravity︷ ︸︸ ︷
dP

dx

∣∣∣∣
g

(10.27)

Every part of the total pressure loss will be discussed in the following section.

10.7.1.1 Friction Pressure Loss

The frictional pressure loss for a conduit can be calculated as

− dP

dx

∣∣∣∣
f

=
S

A
τw (10.28)

Where S is the perimeter of the fluid. For calculating the frictional pressure loss in the
pipe is

− dP

dx

∣∣∣∣
f

=
4 τw

D
(10.29)

The wall shear stress can be estimated by

τw = f
ρm Um

2

2
(10.30)

The friction factor is measured for a single phase flow where the average velocity is
directly related to the wall shear stress. There is not available experimental data for
the relationship of the averaged velocity of the two (or more) phases and wall shear
stress. In fact, this friction factor was not measured for the “averaged” viscosity of the
two phase flow. Yet, since there isn’t anything better, the experimental data that was
developed and measured for single flow is used.

The friction factor is obtained by using the correlation

f = C

(
ρm Um D

µm

)−n

(10.31)

Where C and n are constants which depend on the flow regimes (turbulent or laminar
flow). For laminar flow C = 16 and n = 1. For turbulent flow C = 0.079 and n = 0.25.
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There are several suggestions for the average viscosity. For example, Duckler suggest
the following

µm =
µG QG

QG + QL
+

µL QL

QG + QL
(10.32)

Duckler linear formula does not provide always good approximation and Cichilli suggest
similar to equation (10.18) average viscosity as

µaverage =
1

X
µG

+ (1−X)
µL

(10.33)

Or simply make the average viscosity depends on the mass fraction as

µm = X µG + (1−X)µL (10.34)

Using this formula, the friction loss can be estimated.

10.7.1.2 Acceleration Pressure Loss

The acceleration pressure loss can be estimated by

− dP

dx

∣∣∣∣
a

= ṁ
dUm

dx
(10.35)

The acceleration pressure loss (can be positive or negative) results from change of
density and the change of cross section. Equation (10.35) can be written as

− dP

dx

∣∣∣∣
a

= ṁ
d

dx

(
ṁ

Aρm

)
(10.36)

Or in an explicit way equation (10.36) becomes

− dP

dx

∣∣∣∣
a

= ṁ2




pressure loss due to
density change︷ ︸︸ ︷

1
A

d

dx

(
1

ρm

)
+

pressure loss due to
area change︷ ︸︸ ︷

1
ρm A2

dA

dx




(10.37)

There are several special cases. The first case where the cross section is constant,
dA/ dx = 0. In second case is where the mass flow rates of gas and liquid is constant
in which the derivative of X is zero, dX/ dx = 0. The third special case is for constant
density of one phase only, dρL/ dx = 0. For the last point, the private case is where
densities are constant for both phases.
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10.7.1.3 Gravity Pressure Loss

Gravity was discussed in Chapter 4 and is

dP

dx

∣∣∣∣
g

= g ρm sin θ (10.38)

The density change during the flow can be represented as a function of density. The
density in equation (10.38) is the density without the “movement” (the “static” den-
sity).

10.7.1.4 Total Pressure Loss

The total pressure between two points, (a and b) can be calculated with integration as

∆Pab =
∫ b

a

dP

dx
dx (10.39)

and therefore

∆Pab =

friction︷ ︸︸ ︷
∆Pabf +

acceleration︷ ︸︸ ︷
∆Paba +

gravity︷ ︸︸ ︷
∆Pabg (10.40)

10.7.2 Lockhart Martinelli Model

The second method is by assumption that every phase flow separately One such popular
model by Lockhart and Martinelli8. Lockhart and Martinelli built model based on the
assumption that the separated pressure loss are independent from each other. Lockhart
Martinelli parameters are defined as the ratio of the pressure loss of two phases and
pressure of a single phase. Thus, there are two parameters as shown below.

φ
G

=

√
dP

dx

∣∣∣∣
TP

/
dP

dx

∣∣∣∣
SG

∣∣∣∣∣
f

(10.41)

Where the TP denotes the two phases and SG denotes the pressure loss for the single
gas phase. Equivalent definition for the liquid side is

φ
L

=

√
dP

dx

∣∣∣∣
TP

/
dP

dx

∣∣∣∣
SL

∣∣∣∣∣
f

(10.42)

Where the SL denotes the pressure loss for the single liquid phase.

8This method was considered a military secret, private communication with Y., Taitle
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The ratio of the pressure loss for a single liquid phase and the pressure loss for a
single gas phase is

Ξ =

√
dP

dx

∣∣∣∣
SL

/
dP

dx

∣∣∣∣
SG

∣∣∣∣∣
f

(10.43)

where Ξ is Martinelli parameter.
It is assumed that the pressure loss for both phases are equal.

dP

dx

∣∣∣∣
SG

=
dP

dx

∣∣∣∣
SL

(10.44)

The pressure loss for the liquid phase is

dP

dx

∣∣∣∣
L

=
2 fL UL

2 ρl

DL
(10.45)

For the gas phase, the pressure loss is

dP

dx

∣∣∣∣
G

=
2 fG UG

2 ρl

DG
(10.46)

Simplified model is when there is no interaction between the two phases.
To insert the Diagram.

10.8 Solid–Liquid Flow
Solid–liquid system is simpler to analyze than the liquid-liquid system. In solid–liquid,
the effect of the surface tension are very minimal and can be ignored. Thus, in this
discussion, it is assumed that the surface tension is insignificant compared to the gravity
forces. The word “solid” is not really mean solid but a combination of many solid par-
ticles. Different combination of solid particle creates different “liquid.” Therefor,there
will be a discussion about different particle size and different geometry (round, cubic,
etc). The uniformity is categorizing the particle sizes, distribution, and geometry. For
example, analysis of small coal particles in water is different from large coal particles in
water.

The density of the solid can be above or below the liquid. Consider the case
where the solid is heavier than the liquid phase. It is also assumed that the “liquids”
density does not change significantly and it is far from the choking point. In that case
there are four possibilities for vertical flow:

1. The flow with the gravity and lighter density solid particles.

2. The flow with the gravity and heavier density solid particles.

3. The flow against the gravity and lighter density solid particles.
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4. The flow against the gravity and heavier density solid particles.

All these possibilities are different. However, there are two sets of similar char-
acteristics, possibility, 1 and 4 and the second set is 2 and 3. The first set is similar
because the solid particles are moving faster than the liquid velocity and vice versa for
the second set (slower than the liquid). The discussion here is about the last case (4)
because very little is known about the other cases.

10.8.1 Solid Particles with Heavier Density ρS > ρL

Solid–liquid flow has several combination flow regimes.
When the liquid velocity is very small, the liquid cannot carry the solid particles

because there is not enough resistance to lift up the solid particles. A particle in a
middle of the vertical liquid flow experience several forces. The force balance of
spherical particle in field viscous fluid (creeping flow) is

gravity and buoyancy
forces︷ ︸︸ ︷

π D3 g (ρS − ρL)
6

=

drag forces︷ ︸︸ ︷
CD∞ π D2 ρL UL

2

8
(10.47)

Where CD∞ is the drag coefficient and is a function of Reynolds number, Re, and D
is the equivalent radius of the particles. The Reynolds number defined as

Re =
UL D ρL

µL
(10.48)

Inserting equating (10.48) into equation (10.47) become

CD∞(UL)︷ ︸︸ ︷
f(Re) UL

2 =
4 D g (ρS − ρL)

3 ρL
(10.49)

Equation (10.49) relates the liquid velocity that needed to maintain the particle “float-
ing” to the liquid and particles properties. The drag coefficient, CD∞ is complicated
function of the Reynolds number. However, it can be approximated for several regimes.
The first regime is for Re < 1 where Stokes’ Law can be approximated as

CD∞ =
24
Re

(10.50)

In transitional region 1 < Re < 1000

CD∞ =
24
Re

(
1 +

1
6

Re2/3

)
(10.51)

For larger Reynolds numbers, the Newton’s Law region, CD∞, is nearly constant as

CD∞ = 0.44 (10.52)
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In most cases of solid-liquid system, the Reynolds number is in the second range9. For
the first region, the velocity is small to lift the particle unless the density difference is
very small (that very small force can lift the particles). In very large range (especially
for gas) the choking might be approached. Thus, in many cases the middle region is
applicable.

So far the discussion was about single particle. When there are more than one
particle in the cross section, then the actual velocity that every particle experience
depends on the void fraction. The simplest assumption that the change of the cross
section of the fluid create a parameter that multiply the single particle as

CD∞|α = CD∞ f(α) (10.53)

When the subscript α is indicating the void, the function f(α) is not a linear function.
In the literature there are many functions for various conditions.

Minimum velocity is the velocity when the particle is “floating”. If the velocity is
larger, the particle will drift with the liquid. When the velocity is lower, the particle will
sink into the liquid. When the velocity of liquid is higher than the minimum velocity
many particles will be floating. It has to remember that not all the particle are uniform
in size or shape. Consequently, the minimum velocity is a range of velocity rather than
a sharp transition point.
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Fig. -10.8. The terminal velocity that left the
solid particles.

As the solid particles are not
pushed by a pump but moved by the
forces the fluid applies to them. Thus,
the only velocity that can be applied is
the fluid velocity. Yet, the solid particles
can be supplied at different rate. Thus,
the discussion will be focus on the fluid
velocity. For small gas/liquid velocity,
the particles are what some call fixed flu-
idized bed. Increasing the fluid velocity
beyond a minimum will move the parti-
cles and it is referred to as mix fluidized
bed. Additional increase of the fluid ve-
locity will move all the particles and this
is referred to as fully fluidized bed. For
the case of liquid, further increase will
create a slug flow. This slug flow is when slug shape (domes) are almost empty of the
solid particle. For the case of gas, additional increase create “tunnels” of empty almost
from solid particles. Additional increase in the fluid velocity causes large turbulence and
the ordinary domes are replaced by churn type flow or large bubbles that are almost
empty of the solid particles. Further increase of the fluid flow increases the empty spots
to the whole flow. In that case, the sparse solid particles are dispersed all over. This
regimes is referred to as Pneumatic conveying (see Figure 10.9).

9It be wonderful if flow was in the last range? The critical velocity could be found immediately.
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Mixed
Bed

Fast
Fluidization

Turbulent
Regimes

Slug or
Plug  Flow

Pneumatic
Conveying

Fixed
Bed

Fig. -10.9. The flow patterns in solid-liquid flow.

One of the main difference between the liquid and gas flow in this category is
the speed of sound. In the gas phase, the speed of sound is reduced dramatically with
increase of the solid particles concentration (further reading Fundamentals of Compress-
ible Flow” chapter on Fanno Flow by this author is recommended). Thus, the velocity
of gas is limited when reaching the Mach somewhere between 1/

√
k and 1 since the

gas will be choked (neglecting the double choking phenomenon). Hence, the length of
conduit is very limited. The speed of sound of the liquid does not change much. Hence,
this limitation does not (effectively) exist for most cases of solid–liquid flow.

10.8.2 Solid With Lighter Density ρS < ρ and With Gravity

This situation is minimal and very few cases exist. However, it must be pointed out
that even in solid–gas, the fluid density can be higher than the solid (especially with
micro gravity). There was very little investigations and known about the solid–liquid
flowing down (with the gravity). Furthermore, there is very little knowledge about the
solid–liquid when the solid density is smaller than the liquid density. There is no known
flow map for this kind of flow that this author is aware of.

Nevertheless, several conclusions and/or expectations can be drawn. The issue of
minimum terminal velocity is not exist and therefor there is no fixed or mixed fluidized
bed. The flow is fully fluidized for any liquid flow rate. The flow can have slug flow
but more likely will be in fast Fluidization regime. The forces that act on the spherical
particle are the buoyancy force and drag force. The buoyancy is accelerating the particle
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and drag force are reducing the speed as

π D3 g(ρS − ρL)
6

=
CD∞ π D2ρL (US − UL)2

8
(10.54)

From equation 10.54, it can observed that increase of the liquid velocity will increase
the solid particle velocity at the same amount. Thus, for large velocity of the fluid it
can be observed that UL/US → 1. However, for a small fluid velocity the velocity ratio
is very large, UL/US → 0. The affective body force “seems” by the particles can be in
some cases larger than the gravity. The flow regimes will be similar but the transition
will be in different points.

The solid–liquid horizontal flow has some similarity to horizontal gas–liquid flow.
Initially the solid particles will be carried by the liquid to the top. When the liquid
velocity increase and became turbulent, some of the particles enter into the liquid core.
Further increase of the liquid velocity appear as somewhat similar to slug flow. However,
this author have not seen any evidence that show the annular flow does not appear in
solid–liquid flow.

10.9 Counter–Current Flow
This discussion will be only on liquid–liquid systems (which also includes liquid-gas
systems). This kind of flow is probably the most common to be realized by the masses.
For example, opening a can of milk or juice. Typically if only one hole is opened on the
top of the can, the liquid will flow in pulse regime. Most people know that two holes
are needed to empty the can easily and continuously. Otherwise, the flow will be in a
pulse regime.
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Fig. -10.10. Counter–flow in vertical tubes map.

In most cases, the possibility to
have counter–current flow is limited to
having short length of tubes. In only
certain configurations of the infinite long
pipes the counter–current flow can exist.
In that case, the pressure difference and
gravity (body forces) dominates the flow.
The inertia components of the flow, for
long tubes, cannot compensate for the
pressure gradient. In short tube, the
pressure difference in one phase can be
positive while the pressure difference in
the other phase can be negative. The
pressure difference in the interface must
be finite. Hence, the counter–current
flow can have opposite pressure gradient
for short conduit. But in most cases, the heavy phase (liquid) is pushed by the gravity
and lighter phase (gas) is driven by the pressure difference.

The counter-current flow occurs, for example, when cavity is filled or emptied with
a liquid. The two phase regimes “occurs” mainly in entrance to the cavity. For example,
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Fig. -10.11. Counter–current flow in a can (the left figure) has only one hole thus pulse flow
and a flow with two holes (right picture).

Figure 10.11 depicts emptying of can filled with liquid. The air is “attempting” to enter
the cavity to fill the vacuum created thus forcing pulse flow. If there are two holes, in
some cases, liquid flows through one hole and the air through the second hole and the
flow will be continuous. It also can be noticed that if there is one hole (orifice) and
a long and narrow tube, the liquid will stay in the cavity (neglecting other phenomena
such as dripping flow.).

Fig. -10.12. Picture of Counter-current flow in liquid–gas and solid–gas configurations. The
container is made of two compartments. The upper compartment is filled with the heavy phase
(liquid, water solution, or small wood particles) by rotating the container. Even though the
solid–gas ratio is smaller, it can be noticed that the solid–gas is faster than the liquid–gas flow.

There are three flow regimes10 that have been observed. The first flow pattern
is pulse flow regime. In this flow regime, the phases flow turns into different direction
(see Figure 10.12). The name pulse flow is used to signify that the flow is flowing in
pulses that occurs in a certain frequency. This is opposed to counter–current solid–gas
flow when almost no pulse was observed. Initially, due to the gravity, the heavy liquid is
leaving the can. Then the pressure in the can is reduced compared to the outside and
some lighter liquid (gas)entered into the can. Then, the pressure in the can increase,

10Caution! this statement should be considered as “so far found”. There must be other flow regimes
that were not observed or defined. For example, elongated pulse flow was observed but measured. This
field hasn’t been well explored. There are more things to be examined and to be studied.
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and some heavy liquid will starts to flow. This process continue until almost the liquid
is evacuated (some liquid stay due the surface tension). In many situations, the volume
flow rate of the two phase is almost equal. The duration the cycle depends on several
factors. The cycle duration can be replaced by frequency. The analysis of the frequency
is much more complex issue and will not be dealt here.

Annular Flow in Counter–current flow

Steam
Flow

Water
Flow

Fig. -10.13. Flood in vertical pipe.

The other flow regime is annular flow in
which the heavier phase is on the periphery of
the conduit (In the literature, there are some-
one who claims that heavy liquid will be in-
side). The analysis is provided, but somehow
it contradicts with the experimental evidence.
Probably, one or more of the assumptions that
the analysis based is erroneous). In very small
diameters of tubes the counter–current flow is
not possible because of the surface tension (see
section 4.7). The ratio of the diameter to the
length with some combinations of the physical
properties (surface tension etc) determines the point where the counter flow can start.
At this point, the pulsing flow will start and larger diameter will increase the flow and
turn the flow into annular flow. Additional increase of the diameter will change the
flow regime into extended open channel flow. Extended open channel flow retains the
characteristic of open channel that the lighter liquid (almost) does not effect the heavier
liquid flow. Example of such flow in the nature is water falls in which water flows down
and air (wind) flows up.

The driving force is the second parameter which effects the flow existence. When
the driving (body) force is very small, no counter–current flow is possible. Consider
the can in zero gravity field, no counter–current flow possible. However, if the can was
on the sun (ignoring the heat transfer issue), the flow regime in the can moves from
pulse to annular flow. Further increase of the body force will move the flow to be in
the extended “open channel flow.”

In the vertical co–current flow there are two possibilities, flow with gravity or
against it. As opposed to the co–current flow, the counter–current flow has no possibility
for these two cases. The heavy liquid will flow with the body forces (gravity). Thus it
should be considered as non existent flow.

10.9.1 Horizontal Counter–Current Flow

Up to this point, the discussion was focused on the vertical tubes. In horizontal tubes,
there is an additional flow regime which is stratified . Horizontal flow is different from
vertical flow from the stability issues. A heavier liquid layer can flow above a lighter
liquid. This situation is unstable for large diameter but as in static (see section (4.7)
page 137) it can be considered stable for small diameters. A flow in a very narrow tube
with heavy fluid above the lighter fluid should be considered as a separate issue.
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Fig. -10.14. A flow map to explain the
horizontal counter–current flow.

When the flow rate of both fluids is very
small, the flow will be stratified counter–current
flow. The flow will change to pulse flow when the
heavy liquid flow rate increases. Further increase
of the flow will result in a single phase flow regime.
Thus, closing the window of this kind of flow. Thus,
this increase terminates the two phase flow possibil-
ity. The flow map of the horizontal flow is different
from the vertical flow and is shown in Figure 10.14.
A flow in an angle of inclination is closer to verti-
cal flow unless the angle of inclination is very small.
The stratified counter flow has a lower pressure loss
(for the liquid side). The change to pulse flow increases the pressure loss dramatically.

10.9.2 Flooding and Reversal Flow

The limits of one kind the counter–current flow regimes, that is stratified flow are
discussed here. This problem appears in nuclear engineering (or boiler engineering)
where there is a need to make sure that liquid (water) inserted into the pipe reaching
the heating zone. When there is no water (in liquid phase), the fire could melt or
damage the boiler. In some situations, the fire can be too large or/and the water supply
failed below a critical value the water turn into steam. The steam will flow in the
opposite direction. To analyze this situation consider a two dimensional conduit with a
liquid inserted in the left side as depicted in Figure 10.13. The liquid velocity at very
low gas velocity is constant but not uniform. Further increase of the gas velocity will
reduce the average liquid velocity. Additional increase of the gas velocity will bring it
to a point where the liquid will flow in a reverse direction and/or disappear (dried out).

Liquid
Flow Gas

Flow

Wh

D

y
x

ξ

L

Fig. -10.15. A diagram to explain the
flood in a two dimension geometry.

A simplified model for this situation is for a
two dimensional configuration where the liquid is
flowing down and the gas is flowing up as shown
in Figure 10.15. It is assumed that both fluids are
flowing in a laminar regime and steady state. Ad-
ditionally, it is assumed that the entrance effects
can be neglected. The liquid flow rate, QL, is un-
known. However, the pressure difference in the (x
direction) is known and equal to zero. The bound-
ary conditions for the liquid is that velocity at the
wall is zero and the velocity at the interface is the
same for both phases UG = UL or τi|G = τi|L.
As it will be shown later, both conditions cannot
coexist. The model can be improved by consider-
ing turbulence, mass transfer, wavy interface, etc11.

11The circular configuration is under construction and will be appeared as a separated article mo-
mentarily.
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This model is presented to exhibits the trends and the special features of counter-current
flow. Assuming the pressure difference in the flow direction for the gas is constant and
uniform. It is assumed that the last assumption does not contribute or change sig-
nificantly the results. The underline rational for this assumption is that gas density
does not change significantly for short pipes (for more information look for the book
“Fundamentals of Compressible Flow” in Potto book series in the Fanno flow chapter.).

The liquid film thickness is unknown and can be expressed as a function of the
above boundary conditions. Thus, the liquid flow rate is a function of the boundary
conditions. On the liquid side, the gravitational force has to be balanced by the shear
forces as

dτxy

dx
= ρL g (10.55)

The integration of equation (10.55) results in

τxy = ρL g x + C1 (10.56)

The integration constant, C1, can be found from the boundary condition where τxy(x =
h) = τi. Hence,

τi = ρL g h + C1 (10.57)

The integration constant is then Ci = τi − ρL g h which leads to

τxy = ρL g (x− h) + τi (10.58)

Substituting the newtonian fluid relationship into equation (10.58) to obtained

µL
dUy

dx
= ρL g (x− h) + τi (10.59)

or in a simplified form as

dUy

dx
=

ρL g (x− h)
µL

+
τi

µL
(10.60)

Equation (10.60) can be integrate to yield

Uy =
ρL g

µL

(
x2

2
− hx

)
+

τi x

µL
+ C2 (10.61)

The liquid velocity at the wall, [U(x = 0) = 0], is zero and the integration coefficient
can be found to be

C2 = 0 (10.62)

The liquid velocity profile is then

Uy =
ρL g

µL

(
x2

2
− hx

)
+

τi x

µL
(10.63)
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The velocity at the liquid–gas interface is

Uy(x = h) =
τi h

µL
− ρL g h2

2 µL
(10.64)

The velocity can vanish (zero) inside the film in another point which can be
obtained from

0 =
ρL g

µL

(
x2

2
− hx

)
+

τi x

µL
(10.65)

The solution for equation (10.65) is

x|@UL=0 = 2 h− 2 τi

µL g ρL
(10.66)

The maximum x value is limited by the liquid film thickness, h. The minimum shear
stress that start to create reversible velocity is obtained when x = h which is

0 =
ρL g

µL

(
h2

2
− hh

)
+

τi h

µL
(10.67)

↪→ τi0 =
h g ρL

2

If the shear stress is below this critical shear stress τi0 then no part of the liquid will
have a reversed velocity. The notation of τi0 denotes the special value at which a
starting shear stress value is obtained to have reversed flow. The point where the liquid
flow rate is zero is important and it is referred to as initial flashing point.

The flow rate can be calculated by integrating the velocity across the entire liquid
thickness of the film.

Q

w
=

∫ h

0

Uydx =
∫ h

0

[
ρL g

µL

(
x2

2
− hx

)
+

τi x

µL

]
dx (10.68)

Where w is the thickness of the conduit (see Figure 10.15). Integration equation
(10.68) results in

Q

w
=

h2 (3 τi − 2 g h ρL)
6 µL

(10.69)

It is interesting to find the point where the liquid mass flow rate is zero. This point
can be obtained when equation (10.69) is equated to zero. There are three solutions for
equation (10.69). The first two solutions are identical in which the film height is h = 0
and the liquid flow rate is zero. But, also, the flow rate is zero when 3 τi = 2 g h ρL.
This request is identical to the demand in which

τi
critical

=
2 g h ρL

3
(10.70)
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This critical shear stress, for a given film thickness, reduces the flow rate to zero or
effectively “drying” the liquid (which is different then equation (10.67)).

For this shear stress, the critical upward interface velocity is

Ucritical|interface =

( 2
3− 1

2 )︷︸︸︷
1
6

(
ρL g h2

µL

)
(10.71)

The wall shear stress is the last thing that will be done on the liquid side. The wall
shear stress is

τL|@wall = µL
dU

dx

∣∣∣∣
x=0

= µL




ρL g

µL

(
©©*0
2 x− h

)
+

τi︷ ︸︸ ︷
2 g h ρL

3
1

µL




x=0

(10.72)

Simplifying equation (10.72)12 becomes (notice the change of the sign accounting for
the direction)

τL|@wall =
g h ρL

3
(10.73)

Again, the gas is assumed to be in a laminar flow as well. The shear stress on gas
side is balanced by the pressure gradient in the y direction. The momentum balance on
element in the gas side is

dτxyG

dx
=

dP

dy
(10.74)

The pressure gradient is a function of the gas compressibility. For simplicity, it is
assumed that pressure gradient is linear. This assumption means or implies that the
gas is incompressible flow. If the gas was compressible with an ideal gas equation of
state then the pressure gradient is logarithmic. Here, for simplicity reasons, the linear
equation is used. In reality the logarithmic equation should be used ( a discussion can be
found in “Fundamentals of Compressible Flow” a Potto project book). Thus, equation
(10.74) can be rewritten as

dτxyG

dx
=

∆P

∆y
=

∆P

L
(10.75)

Where ∆y = L is the entire length of the flow and ∆P is the pressure difference of
the entire length. Utilizing the Newtonian relationship, the differential equation is

d2UG

dx2
=

∆P

µG L
(10.76)

12Also noticing that equation (10.70) has to be equal g h ρL to support the weight of the liquid.
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Equation (10.76) can be integrated twice to yield

UG =
∆P

µG L
x2 + C1 x + C2 (10.77)

This velocity profile must satisfy zero velocity at the right wall. The velocity at
the interface is the same as the liquid phase velocity or the shear stress are equal.
Mathematically these boundary conditions are

UG(x = D) = 0 (10.78)

and

UG(x = h) = UL(x = h) (a) or (10.79)

τG(x = h) = τL(x = h) (b)

Applying B.C. (10.78) into equation (10.77) results in

UG = 0 =
∆P

µG L
D2 + C1 D + C2 (10.80)

↪→ C2 = − ∆P

µG L
D2 + C1 D

Which leads to

UG =
∆P

µG L

(
x2 −D2

)
+ C1 (x−D) (10.81)

At the other boundary condition, equation (10.79)(a), becomes

ρL g h2

6 µL
=

∆P

µG L

(
h2 −D2

)
+ C1 (h−D) (10.82)

The last integration constant, C1 can be evaluated as

C1 =
ρL g h2

6 µL (h−D)
− ∆P (h + D)

µG L
(10.83)

With the integration constants evaluated, the gas velocity profile is

UG =
∆P

µG L

(
x2 −D2

)
+

ρL g h2 (x−D)
6 µL (h−D)

− ∆P (h + D) (x−D)
µG L

(10.84)

The velocity in Equation (10.84) is equal to the velocity equation (10.64) when (x = h).
However, in that case, it is easy to show that the gas shear stress is not equal to the
liquid shear stress at the interface (when the velocities are assumed to be the equal).
The difference in shear stresses at the interface due to this assumption, of the equal
velocities, cause this assumption to be not physical.
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The second choice is to use the equal shear stresses at the interface, condition
(10.79)(b). This condition requires that

µG
dUG

dx
= µL

dUL

dx
(10.85)

The expressions for the derivatives are

gas side︷ ︸︸ ︷
2 h ∆P

L
+ µG C1 =

liquid side︷ ︸︸ ︷
2 g h ρL

3
(10.86)

As result, the integration constant is

C1 =
2 g h ρL

3 µG
− 2h ∆P

µG L
(10.87)

The gas velocity profile is then

UG =
∆P

µG L

(
x2 −D2

)
+

(
2 g h ρL

3 µG
− 2 h∆P

µG L

)
(x−D) (10.88)

The gas velocity at the interface is then

UG|@x=h =
∆P

µG L

(
h2 −D2

)
+

(
2 g h ρL

3 µG
− 2 h ∆P

µG L

)
(h−D) (10.89)

This gas interface velocity is different than the velocity of the liquid side. The
velocity at interface can have a “slip” in very low density and for short distances. The
shear stress at the interface must be equal, if no special effects occurs. Since there
no possibility to have both the shear stress and velocity on both sides of the interface,
different thing(s) must happen. It was assumed that the interface is straight but is
impossible. Then if the interface becomes wavy, the two conditions can co–exist.

The wall shear stress is

τG|@wall = µG
dUG

dx

∣∣∣∣
x=D

= µG

(
∆P 2 x

µG L
+

(
2 g h ρL

3 µG
− 2 h ∆P

µG L

))

x=D

(10.90)

or in a simplified form as

τG|@wall =
2∆P (D − h)

L
+

2 g h ρL

3
(10.91)

The Required Pressure Difference
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Wh

D

y
x

D ∆P

L
Lτw|L

Lτw|G

ρ g L h

Fig. -10.16. General forces diagram to calculated the in
a two dimension geometry.

The pressure difference to
create the flooding (drying) has
to take into account the fact that
the surface is wavy. However, as
first estimate the waviness of the
surface can be neglected. The es-
timation of the pressure difference
under the assumption of equal
shear stress can be applied. In
the same fashion the pressure dif-
ference under the assumption the
equal velocity can be calculated.
The actual pressure difference can
be between these two assump-
tions but not must be between them. This model and its assumptions are too sim-
plistic and the actual pressure difference is larger. However, this explanation is to show
magnitudes and trends and hence it provided here.

To calculate the required pressure that cause the liquid to dry, the total balance is
needed. The control volume include the gas and liquid volumes. Figure 10.16 describes
the general forces that acts on the control volume. There are two forces that act
against the gravity and two forces with the gravity. The gravity force on the gas can
be neglected in most cases. The gravity force on the liquid is the liquid volume times
the liquid volume as

FgL = ρ g

V olme/w︷︸︸︷
hL (10.92)

The total momentum balance is (see Figure 10.16)

FgL +

A/w︷︸︸︷
L τw

G
=

A/w︷︸︸︷
L τw

L
+

force due to pressure︷ ︸︸ ︷
D ∆P (10.93)

Substituting the different terms into (10.93) result in

ρ g L h + L

(
2∆P (D − h)

L
+

2 g h ρL

3

)
= L

g h ρL

3
+ D ∆P (10.94)

Simplifying equation (10.94) results in

4 ρ g L h

3
= (2 h−D)∆P (10.95)

or

∆P =
4 ρ g L h

3 (2 h−D)
(10.96)
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This analysis shows far more reaching conclusion that initial anticipation expected.
The interface between the two liquid flowing together is wavy. Unless the derivations
or assumptions are wrong, this analysis equation (10.96) indicates that when D > 2 h
is a special case (extend open channel flow).

10.10 Multi–Phase Conclusion
For the first time multi–phase is included in a standard introductory textbook on fluid
mechanics. There are several points that should be noticed in this chapter. There are
many flow regimes in multi–phase flow that “regular” fluid cannot be used to solve
it such as flooding. In that case, the appropriate model for the flow regime should
be employed. The homogeneous models or combined models like Lockhart–Martinelli
can be employed in some cases. In other case where more accurate measurement are
needed a specific model is required. Perhaps as a side conclusion but important, the
assumption of straight line is not appropriate when two liquid with different viscosity
are flowing.
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APPENDIX A

The Mathematics Backgrounds for
Fluid Mechanics

In this appendix a review of selected topics in mathematics related to fluid mechanics is
presented. These topics are present so that one with some minimal background could
deal with the mathematics that encompass within basic fluid mechanics. Hence without
additional reading, this book on fluid mechanics issues could be read by most readers.
This appendix condenses material that spread in many various textbooks some of which
are advance. Furthermore, some of the material appears in specialty books such as third
order differential equations (and thus it is expected that the student is not familiar with
this material.). There is very minimal original material which appears without proofs.
The material is not presented in “educational” order but in importance order.

A.1 Vectors

U

Uy

Ux

Uz

x

y

z

Fig. -A.1. Vector in Cartesian coor-
dinates system.

Vector is a quantity with direction as oppose to
scalar. The length of the vector in Cartesian co-
ordinates (the coordinates system is relevant) is

‖UUU‖ =
√

Ux
2 + Uy

2 + Uz
2 (A.1)

Vector can be normalized and in Cartesian coordi-
nates depicted in Figure A.1 where Ux is the vector
component in the x direction, Uy is the vector com-
ponent in the y direction, and Uz is the vector component in the z direction. Thus, the

363
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unit vector is

ÛUU =
UUU

‖U‖ =
Ux

‖UUU‖ îii +
Uy

‖UUU‖ ĵjj +
Uz

‖UUU‖k̂kk (A.2)

and general orthogonal coordinates

ÛUU =
UUU

‖U‖ =
U1

‖UUU‖h1 +
U2

‖UUU‖h2 +
U3

‖UUU‖h3 (A.3)

Vectors have some what similar rules to scalars which will be discussed in the next
section.

A.1.1 Vector Algebra

Vectors obey several standard mathematical operations which are applicable to scalars.
The following are vectors, UUU , VVV , and WWW and for in this discussion a and b are scalars.
Then the following can be said

1. (UUU + VVV ) + WWW = (UUU + VVV + WWW ) = UUU + (VVV + WWW )

2. UUU + VVV = VVV + UUU

3. Zero vector is such that UUU + 000 = UUU

4. Additive inverse UUU −UUU = 0

5. a (UUU + VVV ) = aUUU + aVVV

6. a (bUUU) = a bUUU

U

V

W

Fig. -A.2. The right hand rule, multi-
plication of UUU × VVV results in WWW .

The multiplications and the divisions have
somewhat different meaning in a scalar operations.
There are two kinds of multiplications for vectors.
The first multiplication is the “dot” product which
is defined by equation (A.4). The results of this
multiplication is scalar but has no negative value
as in regular scalar multiplication.

UUU · VVV =

regular scalar
multiplication︷ ︸︸ ︷
|UUU | · |VVV | cos

angle
between
vectors︷ ︸︸ ︷

(∠(UUU,VVV )) (A.4)

The second multiplication is the “cross” product which in vector as opposed to
a scalar as in the “dot” product. The “cross” product is defined in an orthogonal

coordinate (ĥ1, ĥ2, and ĥ3) as

UUU × VVV = |UUU | · |VVV | sin
angle︷ ︸︸ ︷

(∠(UUU,VVV )) n̂nn (A.5)
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where θ is the angle between UUU and VVV , and n̂nn is a unit vector perpendicular to both UUU
and VVV which obeys the right hand rule. The right hand rule is referred to the direction
of resulting vector. Note that UUU and VVV are not necessarily orthogonal. Additionally
note that order of multiplication is significant. This multiplication has a negative value
which means that it is a change of the direction.

One of the consequence of this definitions in Cartesian coordinates is

îii
2

= ĵjj
2

= k̂kk
2

= 0 (A.6)

In general for orthogonal coordinates this condition is written as

ĥ1h1h1 × ĥ1h1h1 = ĥ1h1h1

2
= ĥ2h2h2

2
= ĥ3h3h3

2
= 0 (A.7)

where hihihi is the unit vector in the orthogonal system.
In right hand orthogonal coordinate system

ĥ1h1h1 × ĥ2h2h2 = ĥ3h3h3

ĥ2h2h2 × ĥ3h3h3 = ĥ1h1h1

ĥ3h3h3 × ĥ1h1h1 = ĥ2h2h2

ĥ2h2h2 × ĥ1h1h1 = −ĥ3h3h3

ĥ3h3h3 × ĥ2h2h2 = −ĥ1h1h1

ĥ1h1h1 × ĥ3h3h3 = −ĥ2h2h2

(A.8)

The “cross” product can be written as

UUU × VVV = (U2 V3 − U3 V2) ĥ1h1h1 + (U3 V1 − U1 V3) ĥ2h2h2 + (U1 V2 − U2 V1) ĥ3h3h3 (A.9)

Equation (A.9) in matrix form as

UUU × VVV =




ĥ1h1h1 ĥ2h2h2 ĥ3h3h3

U2 U2 U3

V2 V2 V3


 (A.10)

The most complex of all these algebraic operations is the division. The multipli-
cation in vector world have two definition one which results in a scalar and one which
results in a vector. Multiplication combinations shows that there are at least four pos-
sibilities of combining the angle with scalar and vector. The reason that these current
combinations, that is scalar associated with cos θ vectors is associated with sin θ, is
that these combinations have physical meaning. The previous experience is that help
to define multiplication help to definition the division. The number of the possible
combinations of the division is very large. For example, the result of the division can
be a scalar combined or associated with the angle (with cos or sin), or vector with the
angle, etc. However, these above four combinations are not the only possibilities (not
including the left hand system). It turn out that these combinations have very little1

1This author did find any physical meaning these combinations but there could be and those the
word “little” is used.
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physical meaning. Additional possibility is that every combination of one vector element
is divided by the other vector element. Since every vector element has three possible
elements the total combination is 9 = 3 × 3. There at least are two possibilities how
to treat these elements. It turned out that combination of three vectors has a physical
meaning. The three vectors have a need for additional notation such of vector of vector
which is referred to as a tensor. The following combination is commonly suggested

UUU

VVV
=




U1

V1

U2

V1

U3

V1

U1

V2

U2

V2

U3

V2

U1

V3

U2

V3

U3

V3




(A.11)

One such example of this division is the pressure which the explanation is commonality
avoided or eliminated from the fluid mechanics books including the direct approach in
this book.

This tenser or the matrix can undergo regular linear algebra operations such as
finding the eigenvalue values and the eigen “vectors.” Also note the multiplying matrices
and inverse matrix are also available operation to these tensors.

A.1.2 Differential Operators of Vectors

Differential operations can act on scalar functions as well on vector and vector func-
tions. More differential operations can on scalar function can results in vector or vector
function. In multivariate calculus, derivatives of different directions can represented as
a vector or vector function. A compact presentation is a common way to handle the
mathematics which simplify the calculations and explanations. One of these operations
is nabla operator sometimes also called the “del operator.” This operator is a differential
vector. For example, in Cartesian coordinates the operation is

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(A.12)

Where î, ĵ, and k̂ are denoting unit vectors in the x, y, and z directions, respectively.
Many of the operations of vector world, such as, the gradient, divergence, the curl, and
the Laplacian are based or could be constructed from this single operator.

Gradient

This operation acts on a scalar function and results in a vector whose components
are derivatives in the principle directions of a coordinate system. A scalar function is a
function that provide a valued based on the coordinates (in Cartesian coordinates x,y,z).
For example, the temperature of the domain might be expressed as a scalar field.

∇ = î
∂T

∂x
+ ĵ

∂T

∂y
+ k̂

∂T

∂z
(A.13)
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Divergence

The same idea that was discussed in vector section there are two kinds of multipli-
cation in the vector world and two will be for the differential operators. The divergence
is the similar to “dot” product which results in scalar. A vector domain (function) as-
signs a vector to each point such as velocity for example, N , for Cartesian coordinates
is

N(x, y, z) = Nx(x, y, z)̂i + Ny(x, y, z)̂j + Nz(x, y, z)k̂ (A.14)

The dot product of these two vectors, in Cartesian coordinate is results in

div N = ∇ ·N =
∂Nx

∂x
+

∂Ny

∂y
+

∂Nz

∂z
(A.15)

The divergence results in a scalar function which similar to the concept of the vectors
multiplication of the vectors magnitude by the cosine of the angle between the vectors.

Curl

Similar to the “cross product” a similar operation can be defined for the nabla
(note the “right hand rule” notation) for Cartesian coordinate as

curlNNN = ∇×NNN =
(

∂Nz

∂y
− ∂Ny

∂z

)
î+

(
∂Nx

∂z
− ∂Nz

∂x

)
ĵ +

(
∂Ny

∂x
− ∂Nx

∂y

)
k̂

(A.16)

Note that the result is a vector.

Laplacian

The new operation can be constructed from “dot” multiplication of the nabla. A
gradient acting on a scalar field creates a vector field. Applying a divergence on the
result creates a scalar field again. This combined operations is known as the “div grad”
which is given in Cartesian coordinates by

∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(A.17)

This combination is commonality denoted as ∇2. This operator also referred as the
Laplacian operator, in honor of Pierre-Simon Laplace (23 March 1749 – 5 March 1827).

d‘Alembertian

As a super–set for four coordinates (very minimal used in fluid mechanics) and it
reffed to as d’Alembertian or the wave operator, and it defined as

¤2 = ∇2 − 1
c2

∂2

∂2t
(A.18)
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Divergence Theorem

Mathematicians call to or refer to a subset of The Reynolds Transport Theorem
as the Divergence Theorem, or called it Gauss’ Theorem (Carl Friedrich Gauss 30 April
1777 23 February 1855), In Gauss notation it is written as

y

V

(∇ ·NNN) dV =
{

A

NNN ·nnndA (A.19)

In Gauss-Ostrogradsky Theorem (Mikhail Vasilievich Ostrogradsky (September
24, 1801 – January 1, 1862). The notation is a bit different from Gauss and it is
written in Ostrogradsky notation as

∫

V

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dx dy dz =

∫ ∫

Σ

(Pp + Qq + Rr) dΣ (A.20)

Note the strange notation of “Σ” which refers to the area. This theorem is applicable
for a fix control volume and the derivative can enters into the integral. Many engineering
class present this theorem as a theorem on its merit without realizing that it is a subset
of Reynolds Transport Theorem. This subset can further produces several interesting
identities. If NNN is a gradient of a scalar field Π(x, y, z) then it can insert into identity
to produce

y

V

(∇ · (∇Φ)) dV =
y

V

(∇2Φ
)
dV =

{

A

∇Φ ·nnndA (A.21)

Since the definition of ∇Φ = NNN .
Special case of equation (A.21) for harmonic function (solutions Laplace equation

see2 Harminic functions) then the left side vanishes which is useful identity for ideal flow
analysis. This results reduces equation, normally for steady state, to a balance of the
fluxes through the surface. Thus, the harmonic functions can be added or subtracted
because inside the volume these functions contributions is eliminated throughout the
volume.

A.1.3 Differentiation of the Vector Operations

The vector operation sometime fell under (time or other) derivative. The basic of these
relationships is explored. A vector is made of the several scalar functions such as

~RRR = f1(x1, x2, x3, · · · )êee1 + f2(x1, x2, x3, · · · )êee2 + f3(x1, x2, x3, · · · )êee3 + · · · (A.22)

where êeei is the unit vector in the i direction. The cross and dot products when the come
under differentiation can be look as scalar. For example, the dot product of operation

2for more information
http://math.fullerton.edu/mathews/c2003/HarmonicFunctionMod.html
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RRR ·SSS = (xî + y2ĵ) · (sinxî + exp(y)ĵ) can be written as

d (RRR ·SSS)
dt

=
d

dt

((
xî + y2ĵ

)
·
(
sin xî + exp(y)ĵ

))

It can be noticed that

d (RRR ·SSS)
dt

=
d

(
x sin x + y2 exp(y)

)

dt
=

d x

dt
sin x +

d sin x

dt
+

d y2

dt
exp(y) +

d y2

dt
exp(y)

It can be noticed that the manipulation of the simple above example obeys the regular
chain role. Similarly, it can done for the cross product. The results of operations of two
vectors is similar to regular multiplication since the vectors operation obey “regular”
addition and multiplication roles, the chain role is applicable. Hence the chain role
apply for dot operation,

d

dt
(RRR ·SSS) =

dRRR

dt
·SSS +

dSSS

dt
·RRR (A.23)

And the the chain role for the cross operation is

d

dt
(RRR×SSS) =

dRRR

dt
×SSS +

dSSS

dt
×RRR (A.24)

It follows that derivative (notice the similarity to scalar operations) of

d

dt
(RRR ·RRR) = 2RRR

dRRR

at

There are several identities that related to location, velocity, and acceleration. As in
operation on scalar time derivative of dot or cross of constant velocity is zero. Yet, the
most interesting is

d

dt
(RRR×UUU) = UUU ×UUU + RRR× dUUU

dt
(A.25)

The first part is zero because the cross product with itself is zero. The second part is
zero because Newton law (acceleration is along the path of R).

A.1.3.1 Orthogonal Coordinates

These vectors operations can appear in different orthogonal coordinates system. There
are several orthogonal coordinates which appears in fluid mechanics operation which
include this list: Cartesian coordinates, Cylindrical coordinates, Spherical coordinates,
Parabolic coordinates, Parabolic cylindrical coordinates Paraboloidal coordinates, Oblate
spheroidal coordinates, Prolate spheroidal coordinates, Ellipsoidal coordinates, Elliptic
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cylindrical coordinates, Toroidal coordinates, Bispherical coordinates, Bipolar cylindrical
coordinates Conical coordinates, Flat-ring cyclide coordinates, Flat-disk cyclide coordi-
nates, Bi-cyclide coordinates and Cap-cyclide coordinates. Because there are so many
coordinates system is reasonable to develop these operations for any for any coordi-
nates system. Three common systems typical to fluid mechanics will be presented and
followed by a table and methods to present all the above equations.

Cylindrical Coordinates

e1

̂

θ

x

y

z

r
̂r

θx

y

Fig. -A.3. Cylindrical Coordinate System.

The cylindrical coordinates are common-
ality used in situations where there is line of
symmetry or kind of symmetry. This kind sit-
uations occur in pipe flow even if the pipe is
not exactly symmetrical. These coordinates re-
duced the work, in most cases, because prob-
lem is reduced a two dimensions. Historically,
these coordinate were introduced for geometri-
cal problems about 2000 years ago3. The cylin-
drical coordinates are shown in Figure A.3. In
the figure shows that the coordinates are r, θ,
and z. Note that unite coordinates are denoted as r̂, θ̂, and ẑ. The meaning of −→r
and r̂ are different. The first one represents the vector that is the direction of r̂ while
the second is the unit vector in the direction of the coordinate r. These three different
rs are some what similar to any of the Cartesian coordinate. The second coordinate θ
has unite coordinate θ̂. The new concept here is the length factor. The coordinate θ is
angle. In this book the dimensional chapter shows that in physics that derivatives have
to have same units in order to compare them or use them. Conversation of the angel
to units of length is done by length factor which is, in this case, r. The conversion
between the Cartesian coordinate and the Cylindrical is

r =
√

x2 + y2 θ = arctan
y

x
z = z (A.26)

The reverse transformation is

x = r cos θ y = r sin θ z = z (A.27)

The line element and volume element are

ds =
√

dr2 + (r dθ)2 + dz2 dr r dθ dz (A.28)

The gradient in cylindrical coordinates is given by

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ ẑ

∂

∂z
(A.29)

3Coolidge, Julian (1952). ”The Origin of Polar Coordinates”. American Mathematical Monthly
59: 7885. http://www-history.mcs.st-and.ac.uk/Extras/Coolidge Polars.html. Note the ad-
vantage of cylindrical (polar) coordinates in description of geometry or location relative to a center
point.
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The curl is written

∇×NNN =
(

1
r

∂Nz

∂θ
− ∂Nθ

∂z

)
r̂ +

(
∂Nr

∂z
− ∂Nz

∂r

)
θ̂+ (A.30)

1
r

(
∂ (r Nθ)

∂r
− ∂Nθ

∂θ

)
ẑ (A.31)

The Laplacian is defined by

∇ · ∇ =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂θ2
+

∂2

∂z2
(A.32)

Spherical Coordinates

̂θ

x

y

z

r

̂r

θx

y

̂φ

φ

z

Fig. -A.4. Spherical Coordinate System.

The spherical coordinates system is a
three-dimensional coordinates which is im-
provement or further modifications of the cylin-
drical coordinates. Spherical system used for
cases where spherical symmetry exist. In fluid
mechanics such situations exist in bubble dy-
namics, boom explosion, sound wave propaga-
tion etc. A location is represented by a ra-
dius and two angles. Note that the first an-
gle (azimuth or longitude) θ range is between
0 < θ < 2 π while the second angle (colati-
tude) is only 0 < φ < π. The radius is the distance between the origin and the location.
The first angle between projection on x− y plane and the positive x–axis. The second
angle is between the positive y–axis and the vector as shown in Figure A.4.

The conversion between Cartesian coordinates to Spherical coordinates

x = r sin φ cos θ y = r sin φ sin θ z = r cosφ (A.33)

The reversed transformation is

r =
√

x2 + y2 + z2 φ = arccos
(z

r

)
(A.34)

Line element and element volume are

ds =
√

dr2 + (r cos θ dθ)2 + (r sin θ dφ)2 dV = r2 sin θ dr dθ dφ (A.35)

The gradient is

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
+ φ̂

1
r sin θ

∂

∂φ
(A.36)

The divergence in spherical coordinate is

∇ ·NNN =
1
r2

∂
(
r2Nr

)

∂r
+

1
r sin θ

∂ (Nθ sin θ)
∂θ

+
1

r sin θ

∂Nφ

∂φ
(A.37)
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The curl in spherical coordinates is

∇×NNN =
1

r sin θ

(
∂ (Nφ sin θ)

∂θ
− ∂Nθ

∂φ

)
r̂+

1
r

(
1

sin θ

∂Nr

∂φ
− ∂ (rNφ)

∂r

)
θ̂ +

1
r

(
∂ (rNθ)

∂r
− ∂Nr

∂θ

)
φ̂

(A.38)

The Laplacian in spherical coordinates is

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2θ

∂2

∂φ2
(A.39)

General Orthogonal Coordinates

e1

e2

q
1

increase in

Fig. -A.5. The general Orthogonal
with unit vectors.

There are several orthogonal system and gen-
eral form is needed. The notation for the presenta-
tion is required general notation of the units vectors
is êi and coordinates distance coefficient is hi where
i is 1,2,3. The coordinates distance coefficient is
the change the differential to the actual distance.
For example in cylindrical coordinates, the unit vec-
tors are: r̂, θ̂, and ẑ. The units r̂ and ẑ are units
with length. However, θ̂ is lengthens unit vector
and the coordinate distance coefficient in this case
is r. As in almost all cases, there is dispute what
the proper notation for these coefficients. In mathematics it is denoted as q while in
engineering is denotes h. Since it is engineering book the h is adapted. Also note
that the derivative of the coordinate in the case of cylindrical coordinate is ∂θ and unit
vector is θ̂. While the θ is the same the meaning is different and different notations
need. The derivative quantity will be denoted by q superscript.

The length of

d`2 =
d∑

i=1

(
hkdqk

)2
(A.40)

The nabla operator in general orthogonal coordinates is

∇ =
ê1

h1

∂

∂q1
+

ê2

h2

∂

∂q2
+

ê3

h3

∂

∂q3
(A.41)

Gradient

The gradient in general coordinate for a scalar function TTT is the nabla operator
in general orthogonal coordinates as

∇TTT =
ê1

h1

∂TTT

∂q1
+

ê2

h2

∂TTT

∂q2
+

ê3

h3

∂TTT

∂q3
(A.42)
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The divergence of a vector equals

∇ ·NNN =
1

h1h2h3

[
∂

∂q1
(N1h2h3) +

∂

∂q2
(N2h3h1) +

∂

∂q3
(N3h1h2)

]
. (A.43)

For general orthogonal coordinate system the curl is

∇×NNN =
ê1

h2 h3

[
∂

∂q2
(h3 N3)− ∂

∂q3
(h2 N2)

]
+

ê2

h3 h1

[
∂

∂q3
(h1 N1)− ∂

∂q1
(h3 N3)

]
+

ê3

h1 h2

[
∂

∂q1
(h2N2)− ∂

∂q2
(h1N1)

] (A.44)

The Laplacian of a scalar equals

∇2φ =
1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂φ

∂q1

)
+

∂

∂q2

(
h3h1

h2

∂φ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂φ

∂q3

)]

(A.45)

The following table showing the different values for selected orthogonal system.

Fig. -A.6. Parabolic coordinates by user WillowW using Blender.
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Table -A.1. Orthogonal coordinates systems (under construction please ignore)

Orthogonal
coordinates
systems

Remarks h q

name 1 2 3 1 2 3

Cartesian standard 1 1 1 x y z

Cylindrical common 1 r 1 r θ z

Spherical common 1 r r cos θ r θ ϕ

Paraboloidal ?
√

u2 + v2
√

u2 + v2 u v u v θ

Ellipsoidal ? λ µ ν

A.2 Ordinary Differential Equations (ODE)

In this section a brief summary of ODE is presented. It is not intent to be a replacement
to a standard textbook but as a quick reference. It is suggested that the reader interested
in depth information should read “Differential Equations and Boundary Value Problems”
by Boyce de–Prima or any other book in this area. Ordinary differential equations are
defined by the order of the highest derivative. If the highest derivative is first order the
equation is referred as first order differential equation etc. Note that the derivatives are
integers e.g. first derivative, second derivative etc4. ODE are categorized into linear
and non-linear equations. The meaning of linear equation is that the operation is such
that

aL (u1) + bL (u2) = L (a u1 + b u2) (A.46)

An example of such linear operation L = d
dt + 1 acting on y is dy1

dt + y1. Or this

operation on y2 is dy2
dt + y2 and the summation of operation the sum operation of

L(y1 + y2) = y1+y2
dt + y1 + y2.

A.2.1 First Order Differential Equations

As expect, the first ODEs are easier to solve and they are the base for equations of
higher order equation. The first order equations have several forms and there is no one
solution fit all but families of solutions. The most general form is

f

(
u,

du

dt
, t

)
= 0 (A.47)

4Note that mathematically, it is possible to define fraction of derivative. However, there is no
physical meaning to such a product according to this author believe.
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Sometimes equation (A.47) can be simplified to the first form as

du

dt
= F (t, u) (A.48)

A.2.2 Variables Separation or Segregation

In some cases equation (A.48) can be written as F (t, u) = X(t)U(u). In that case it
is said that F is spreadable and then equation (A.48) can be written as

du

U(u)
= X(t)dt (A.49)

Equation can be integrated either analytically or numerically and the solution is

∫
du

U(u)
=

∫
X(t)dt (A.50)

The limits of the integral is (are) the initial condition(s). The initial condition is the
value the function has at some points. The name initial condition is used because the
values are given commonly at initial time.

Example A.1:
Solve the following equation

du

dt
= u t (1.I.a)

with the initial condition u(t = 0) = u0.

Solution

The solution can be obtained by the variable separation method. The separation yields

du

u
= t dt (1.I.b)

The integration of equation (1.I.b) becomes
∫

du

u
=

∫
t dt =⇒ ln (u) + ln (c) =

t2

2
(1.I.c)

Equation (1.I.c) can be transferred to

u = c et2 (1.I.d)

For the initial condition of u(0) = u0 then

u = u0 et2 (1.I.e)

End Solution
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A.2.2.1 The Integral Factor Equations

Another method is referred to as integration factor which deals with a limited but very
important class of equations. This family is part of a linear equations. The general form
of the equation is

dy

dx
+ g(x) y = m(x) (A.51)

Multiplying equation (A.51) by unknown function N(x) transformed it to

N(x)
dy

dx
+ N(x) g(x) y = N(x)m(x) (A.52)

What is needed from N(x) is to provide a full differential such as

N(x)
dy

dx
+ N(x) g(x) y =

d [N(x) g(x) y]
dx

(A.53)

This condition (note that the previous methods is employed here) requires that

dN(x)
dx

= N(x) g(x) =⇒ dN(x)
N(x)

= g(x) dx (A.54)

Equation (A.54) is integrated to be

ln (N(x)) =
∫

g(x)dx =⇒ N(x) = e

∫
g(x)dx

(A.55)

Using the differentiation chain rule provides

dN(x)
dx

=

dv
du︷ ︸︸ ︷

e

∫
g(x)dx

du
dx︷︸︸︷

g(x) (A.56)

which indeed satisfy equation (A.53). Thus equation (A.52) becomes

d [N(x) g(x) y]
dx

= N(x)m(x) (A.57)

Multiplying equation (A.57) by dx and integrating results in

N(x) g(x) y =
∫

N(x)m(x) dx (A.58)

The solution is then

y =

∫
N(x) m(x) dx

g(x) e
R

g(x)dx︸ ︷︷ ︸
N(x)

(A.59)

A special case of g(t) = constant is shown next.



A.2. ORDINARY DIFFERENTIAL EQUATIONS (ODE) 377

Example A.2:
Find the solution for a typical problem in fluid mechanics (the problem of Stoke flow or
the parachute problem) of

dy

dx
+ y = 1

Solution

Substituting m(x) = 1 and g(x) = 1 into equation (A.59) provides

y = e−x (ex + c) = 1 + ce−x

End Solution

A.2.3 Non–Linear Equations

Non-Linear equations are equations that the power of the function or the function
derivative is not equal to one or their combination. Many non linear equations can be
transformed into linear equations and then solved with the linear equation techniques.
One such equation family is referred in the literature as the Bernoulli Equations5. This
equation is

du

dt
+ m(t)u = n(t)

non–linear
part︷︸︸︷

up (A.60)

The transformation v = u1−p turns equation (A.60) into a linear equation which is

dv

dt
+ (1− p)m(t) v = (1− p)n(t) (A.61)

The linearized equation can be solved using the linear methods. The actual solution is
obtained by reversed equation which transferred solution to

u = v(p−1) (A.62)

Example A.3:
Solve the following Bernoulli equation

du

dt
+ t2 u = sin(t) u3 (1.III.a)

5Not to be confused with the Bernoulli equation without the s that referred to the energy equation.
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Solution

The transformation is
v = u2 (1.III.b)

Using the definition (1.III.b) equation (1.III.a) becomes

dv

dt

1−p︷︸︸︷
−2 t2 v =

1−p︷︸︸︷
−2 sin(t) (1.III.c)

The homogeneous solution of equation (1.III.c) is

u(t) = ce
−t3
3 (1.III.d)

And the general solution is

u = e−
t3

3




private solution︷ ︸︸ ︷
∫
e

t3

3 sin (t) dt +c


 (1.III.e)

End Solution

A.2.3.1 Homogeneous Equations

Homogeneous function is given as

du

dt
= f(u, t) = f(a u, a t) (A.63)

for any real positive a. For this case, the transformation of u = v t transforms equation
(A.63) into

t
dv

dt
+ v = f(1, v) (A.64)

In another words if the substitution u = v t is inserted the function f become a function
of only v it is homogeneous function. Example of such case u′ = (

u3 − t3
)
/t3 becomes

u′ = (
v3 + 1

)
. The solution is then

ln |t| =
∫

dv

f(1, v)− v
+ c (A.65)

Example A.4:
Solve the equation

du

dt
= sin

(u

t

)
+

(
u4 − t4

t4

)
(1.IV.a)
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Solution

Substituting u = v T yields
du

dt
= sin (v) + v4 − 1 (1.IV.b)

or

t
dv

dt
+ v = sin (v) + v4 − 1 =⇒ t

dv

dt
= sin (v) + v4 − 1− v (1.IV.c)

Now equation (1.IV.c) can be solved by variable separation as

dv

sin (v) + v4 − 1− v
= t dt (1.IV.d)

Integrating equation (1.IV.d) results in

∫
dv

sin (v) + v4 − 1− v
=

t2

2
+ c (1.IV.e)

The initial condition can be inserted via the boundary of the integral.
End Solution

A.2.3.2 Variables Separable Equations

In fluid mechanics and many other fields there are differential equations that referred
to variables separable equations. In fact, this kind of class of equations appears all over
this book. For this sort equations, it can be written that

du

dt
= f(t)g(u) (A.66)

The main point is that f(t) and be segregated from g(u). The solution of this kind of
equation is ∫

du

g(u)
=

∫
f(t) dt (A.67)

Example A.5:
Solve the following ODE

du

dt
= −u2 t2 (1.V.a)

Solution

Segregating the variables to be

∫
du

u2
=

∫
t2 dt (1.V.b)
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Integrating equation (1.V.b) transformed into

− 1
u

=
t3

3
+ c1 (1.V.c)

Rearranging equation (1.V.c) becomes

u =
−3

t3 + c
(1.V.d)

End Solution

A.2.3.3 Other Equations

There are equations or methods that were not covered by the above methods. There
are additional methods such numerical analysis, transformation (like Laplace transform),
variable substitutions, and perturbation methods. Many of these methods will be even-
tually covered by this appendix.

A.2.4 Second Order Differential Equations

The general idea of solving second order ODE is by converting them into first order
ODE. One such case is the second order ODE with constant coefficients.

The simplest equations are with constant coefficients such as

a
d2u

dt2
+ b

du

dt
+ c u = 0 (A.68)

In a way, the second order ODE is transferred to first order by substituting the one
linear operator to two first linear operators. Practically, it is done by substituting est

where s is characteristic constant and results in the quadratic equation

a s2 + b s + s = 0 (A.69)

If b2 > 4 a c then there are two unique solutions for the quadratic equation and the
general solution form is

u = c1 es1 t + c2 es2 t (A.70)

For the case of b2 = 4 a c the general solution is

u = c1 es1 t + c2 t es1 t (A.71)

In the case of b2 > 4 a c, the solution of the quadratic equation is a complex number
which means that the solution has exponential and trigonometric functions as

u = c1e
α t cos(βt) + c2e

α t sin(βt) (A.72)
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Where the real part is

α =
−b

2 a
(A.73)

and the imaginary number is

β =
√

4 a c− b2

2 a
(A.74)

Example A.6:
Solve the following ODE

d2u

dt2
+ 7

du

dt
+ 10 u = 0 (1.VI.a)

Solution

The characteristic equation is

s2 + 7 s + 10 = 0 (1.VI.b)

The solution of equation (1.VI.b) are −2, and −5. Thus, the solution is

u = k1 e−2 t + k2 e−5 t (1.VI.c)

End Solution

A.2.4.1 Non–Homogeneous Second ODE

Homogeneous equation are equations that equal to zero. This fact can be used to solve
non-homogeneous equation. Equations that not equal to zero in this form

a
d2u

dt2
+ b

du

dt
+ c u = l(x) (A.75)

The solution of the homogeneous equation is zero that is the operation L(uh) = 0,
where L is Linear operator. The additional solution of L(up) is the total solution as

L (utotal) =

=0︷ ︸︸ ︷
L (uh)+L (up) =⇒ utotal = uh + up (A.76)

Where the solution uh is the solution of the homogeneous solution and up is the solution
of the particular function l(x). If the function on the right hand side is polynomial than
the solution is will

utotal = uh +
n∑

i=1

upi (A.77)

The linearity of the operation creates the possibility of adding the solutions.
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Example A.7:
Solve the non-homogeneous equation

d2u

dt2
− 5

du

dt
+ 6 u = t + t2

Solution

The homogeneous solution is

u(t) = c1 e2 t + c1 e3 t (1.VII.a)

the particular solution for t is

u(t) =
6 t + 5

36
(1.VII.b)

and the particular solution of the t2 is

u(t) =
18 t2 + 30 t + 19

108
(1.VII.c)

The total solution is

u(t) = c1 e2 t + c1 e3 t +
9 t2 + 24 t + 17

54
(1.VII.d)

End Solution

A.2.5 Non–Linear Second Order Equations

Some of the techniques that were discussed in the previous section (first order ODE)
can be used for the second order ODE such as the variable separation.

A.2.5.1 Segregation of Derivatives

If the second order equation

f(u, u̇, ü) = 0

can be written or presented in the form

f1(u)u̇ = f2 (u̇) ü (A.78)

then the equation (A.78) is referred to as a separable equation (some called it segregated
equations). The derivative of u̇ can be treated as a new function v and v̇ = ü. Hence,
equation (A.78) can be integrated

∫ u

u0

f1(u)u̇ =
∫ u̇

u̇0

f2 (u̇) ü =
∫ v

v0

f2 (u) v̇ (A.79)
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The integration results in a first order differential equation which should be dealt with
the previous methods. It can be noticed that the function initial condition is used
twice; first with initial integration and second with the second integration. Note that
the derivative initial condition is used once. The physical reason is that the equa-
tion represents a strong effect of the function at a certain point such surface tension
problems. This equation family is not well discussed in mathematical textbooks6.

Example A.8:
Solve the equation

√
u

du

dt
− sin

(
du

dt

)
d2u

dt2
= 0

With the initial condition of u(0) = 0 and du
dt (t = 0) = 0 What happen to the extra

“dt”?

Solution

Rearranging the ODE to be

√
u

du

½½dt
= sin

(
du

dt

)
d

½½dt

(
du

dt

)
(1.VIII.a)

Thus the extra dt is disappeared and equation (1.VIII.a) becomes
∫ √

u du =
∫

sin
(

du

dt

)
d

(
du

dt

)
(1.VIII.b)

and transformation to v is ∫ √
u du =

∫
sin (v) dv (1.VIII.c)

After the integration equation (1.VIII.c) becomes

2
3

(
u

3
2 − u0

3
2

)
= cos (v0)− cos (v) = cos

(
du0

dt

)
− cos

(
du

dt

)
(1.VIII.d)

Equation (1.VIII.d) can be rearranged as

du

dt
= arcsin

(
2
3

(
u0

3
2 − u

3
2

)
+ cos (v0)

)
(A.80)

Using the first order separation method yields
∫ t

0

dt =
∫ u

u0

du

arcsin


2

3


u0

3
2︸︷︷︸

=0

−u
3
2


 + cos (v0)︸ ︷︷ ︸

=1




(A.81)

6This author worked (better word toyed) in (with) this area during his master but to his shame he
did not produce any papers on this issue. The papers are still his drawer and waiting to a spare time.
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The solution (A.81) shows that initial condition of the function is used twice while the
initial of the derivative is used only once.

End Solution

A.2.5.2 Full Derivative Case Equations

Another example of special case or families of second order differential equations which
is results of the energy integral equation derivations as

u− a u

(
du

d t

) (
d2u

d t2

)
= 0 (A.82)

where a is constant. One solution is u = k1 and the second solution is obtained by
solving

1
a

=
(

du

d t

) (
d2u

d t2

)
(A.83)

The transform of v = du
dt results in

1
a

= v
dv

dt
=⇒ dt

a
= v dv (A.84)

which can be solved with the previous methods.
Bifurcation to two solutions leads

t

a
+ c =

1
2

v2 =⇒ du

dt
= ±

√
2 t

a
+ c1 (A.85)

which can be integrated as

u =
∫
±

√
2 t

a
+ c1 dt = ±a

3

(
2 t

a
+ c1

) 3
2

+ c2 (A.86)

A.2.5.3 Energy Equation ODE

It is non–linear because the second derivative is square and the function multiply the
second derivative.

u

(
d2u

d t2

)
+

(
du

d t

)2

= 0 (A.87)

It can be noticed that that c2 is actually two different constants because the plus minus
signs.

d

dt

(
u

du

d t

)
= 0 (A.88)
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after integration

u
du

d t
= k1 (A.89)

Further rearrangement and integration leads to the solution which is

u2

2 k1
= t + k2 (A.90)

For non–homogeneous equation they can be integrated as well.

Example A.9:
Show that the solution of

u

(
d2u

d t2

)
+

(
du

d t

)2

+ u = 0 (1.IX.a)

is

−

√
3

∫
u√

3 k1 − u3
du

√
2

= t + k2
(1.IX.b)

√
3

∫
u√

3 k1 − u3
du

√
2

= t + k2
(1.IX.c)

A.2.6 Third Order Differential Equation

There are situations where fluid mechanics7 leads to third order differential equation.
This kind of differential equation has been studied in the last 30 years to some degree.
The solution to constant coefficients is relatively simple and will be presented here.
Solution to more complicate linear equations with non constant coefficient (function of
t) can be solved sometimes by Laplace transform or reduction of the equation to second
order Olivier Vallee8.

The general form for constant coefficient is

d3u

dt3
+ a

d2u

dt2
+ b

du

dt
+ c u = 0 (A.91)

The solution is assumed to be of the form of est which general third order polonium.
Thus, the general solution is depend on the solution of third order polonium. Third

7The unsteady energy equation in accelerated coordinate leads to a third order differential equation.
8“On the linear third-order differential equation” Springer Berlin Heidelberg, 1999. Solving Third

Order Linear Differential Equations in Terms of Second Order Equations Mark van Hoeij
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order polonium has always one real solution. Thus, derivation of the leading equation
(results of the ode) is reduced into quadratic equation and thus the same situation exist.

s3 + a1 s2 + a2 s + a3 = 0 (A.92)

The solution is

s1 = −1
3
a1 + (S + T ) (A.93)

s2 = −1
3
a1 − 1

2
(S + T ) +

1
2
i
√

3(S − T ) (A.94)

and

s3 = −1
3
a1 − 1

2
(S + T )− 1

2
i
√

3(S − T ) (A.95)

Where

S =
3
√

R +
√

D, (A.96)

T =
3
√

R−
√

D (A.97)

and where the D is defined as

D = Q3 + R2 (A.98)

and where the definitions of Q and R are

Q =
3a2 − a1

2

9
(A.99)

and

R =
9a1a2 − 27a3 − 2a1

3

54
(A.100)

Only three roots can exist for the Mach angle, θ. From a mathematical point of view,
if D > 0, one root is real and two roots are complex. For the case D = 0, all the roots
are real and at least two are identical. In the last case where D < 0, all the roots are
real and unequal.

When the characteristic equation solution has three different real roots the solu-
tion of the differential equation is

u = c1 es1 t + c2 es2 t + c3 es3 t (A.101)
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In the case the solution to the characteristic has two identical real roots

u = (c1 + c2 t) es1 t + c3 es2 t (A.102)

Similarly derivations for the case of three identical real roots. For the case of only one
real root, the solution is

u = (c1 sin b1 + c2 cos b1) ea1t + c3e
s3t (A.103)

Where a1 is the real part of the complex root and b1 imaginary part of the root.

A.2.7 Forth and Higher Order ODE

The ODE and partial differential equations (PDE) can be of any integer order. Some-
times the ODE is fourth order or higher the general solution is based in idea that
equation is reduced into a lower order. Generally, for constant coefficients ODE can
be transformed into multiplication of smaller order linear operations. For example, the
equation

d4u

dt4
− u = 0 =⇒

(
d4

dt4
− 1

)
u = 0 (A.104)

can be written as combination of
(

d2

dt2
− 1

) (
d2

dt2
+ 1

)
u = 0 or

(
d2

dt2
+ 1

) (
d2

dt2
− 1

)
u = 0 (A.105)

The order of operation is irrelevant as shown in equation (A.105). Thus the solution
of

(
d2

dt2
+ 1

)
u = 0 (A.106)

with the solution of
(

d2

dt2
− 1

)
u = 0 (A.107)

are the solutions of (A.104). The solution of equation (A.106) and equation (A.107)
was discussed earlier.

The general procedure is based on the above concept but is some what simpler.
Inserting es t into the ODE

an u(n) + an−1 u(n−1) + an−2 u(n−2) + · · ·+ a1 u′ + a0 u = 0 (A.108)

yields characteristic equation

an sn + an−1 sn−1 + an−2 sn−2 + · · ·+ a1 s + a0 = 0 (A.109)
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If The Solution of
Characteristic Equation

The Solution of
Differential Equation Is

all roots are real and different
e.g. s1 6= s2 6= s3 6= s4 · · · 6= sn

u = c1 es1t + c2 es2t + · · ·+ cn esnt

all roots are real but some are
identical e.g. s1 = s2 = · · · = sk

and some different
e.g. sk+1 6= sk+2 6= sk+3 · · · 6= sn

u =
(
c1 + c2 t + · · ·+ ck tk−1

)
es1t+

ck+1 esk+1t + ck+2 esk+2t + · · ·+ cn esnt

k/2 roots, are pairs of conjugate
complex numbers of si = ai ± bi

and some real and different
e.g. sk+1 6= sk+2 6= sk+3 · · · 6= sn

u = (cos(b1 t) + sin(b1 t)) ea1t+
· · ·+ (cos(bi t) + sin(bi t)) eait+
· · ·+ (cos(bk t) + sin(bk t)) eakt+
ck+1 esk+1t + ck+2 esk+2t + · · ·+ cn esnt

k/2 roots, are pairs of conjugate
complex numbers of si = ai ± bi,
` roots are similar and some real
and different
e.g. sk+1 6= sk+2 6= sk+3 · · · 6= sn

u = (cos(b1 t) + sin(b1 t)) ea1t+
· · ·+ (cos(bi t) + sin(bi t)) eait+
· · ·+ (cos(bk t) + sin(bk t)) eakt+(
ck+1 + ck+2 t + · · ·+ ck+` t`−1

)
esk+1t+

ck+2 esk+2t + ck+3 esk+3t + · · ·+ cn esnt

Example A.10:
Solve the fifth order ODE

d5u

dt5
− 11

d4u

dt4
+ 57

d3u

dt3
− 149

d2u

dt2
+ 192

du

dt
− 90 u = 0 (1.X.a)

Solution

The characteristic equation is

s5 − 11 s4 + 57 s3 − 149 s2 + 192 s− 90 = 0 (1.X.b)

With the roots of the equation (1.X.b) (these roots can be found using numerical
methods or Descartes’ Rule) are

s1,2 = 3± 3 i

s3,4 = 2± i

s5 = 1

(1.X.c)

The roots are two pairs of complex numbers and one real number. Thus the solution
is

u = c1 et + e2 t (c2 sin (t) + c3 cos (t)) + e3 t (c4 sin (3 t) + c5 cos (3 t)) (1.X.d)

End Solution
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A.2.8 A general Form of the Homogeneous Equation

The homogeneous equation can be generalized to

k0 tn
dnu

dtn
+ k1 tn−1 dn−1u

dtn−1
+ · · ·+ kn−1 t

du

dt
+ kn u = a x (A.110)

To be continue

A.3 Partial Differential Equations
Partial Differential Equations (PDE) are differential equations which include function
includes the partial derivatives of two or more variables. Example of such equation is

F (ut, ux, . . .) = 0 (A.111)

Where subscripts refers to derivative based on it. For example, ux = ∂u
∂x . Note that

partial derivative also include mix of derivatives such as uxy. As one might expect PDE
are harder to solve.

Many situations in fluid mechanics can be described by PDE equations. Gener-
ally, the PDE solution is done by transforming the PDE to one or more ODE. Partial
differential equations are categorized by the order of highest derivative. The nature of
the solution is based whether the equation is elliptic parabolic and hyperbolic. Nor-
mally, this characterization is done for for second order. However, sometimes similar
definition can be applied for other order. The physical meaning of the these definition is
that these equations have different characterizations. The solution of elliptic equations
depends on the boundary conditions The solution of parabolic equations depends on
the boundary conditions but as well on the initial conditions. The hyperbolic equations
are associated with method of characteristics because physical situations depends only
on the initial conditions. The meaning for initial conditions is that of solution depends
on some early points of the flow (the solution). The general second-order PDE in two
independent variables has the form

axx uxx + 2axy uxy + ayy uyy + · · · = 0 (A.112)

The coefficients axx, axy, ayy might depend upon ”x” and ”y”. Equation (A.112) is
similar to the equations for a conic geometry:

axx x2 + axy x y + ayy y2 + · · · = 0 (A.113)

In the same manner that conic geometry equations are classified are based on the
discriminant a2

xy − 4 axx ayy, the same can be done for a second-order PDE. The dis-
criminant can be function of the x and y and thus can change sign and thus the
characteristic of the equation. Generally, when the discriminant is zero the equation are
called parabolic. One example of such equation is heat equation. When the discriminant
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is larger then zero the equation is referred as hyperbolic equations. In fluid mechanics
this kind equation appear in supersonic flow or in supper critical flow in open channel
flow. The equations that not mentioned above are elliptic which appear in ideal flow
and subsonic flow and sub critical open channel flow.

A.3.1 First-order equations

First order equation can be written as

u = ax
∂u

∂x
+ ay

∂u

∂x
+ . . . (A.114)

The interpretation the equation characteristic is complicated. However, the physics
dictates this character and will be used in the book.

An example of first order equation is

∂u

∂x
+

∂u

∂y
= 0 (A.115)

The solution is assume to be u = Y (y)X(x) and substitute into the (A.115) results in

Y (y)
∂X(x)

∂x
+ X(x)

∂Y (y)
∂y

= 0 (A.116)

Rearranging equation (A.116) yields

1
X(x)

∂X(x)
∂x

+
1

Y (y)
∂Y (y)

∂y
= 0 (A.117)

A possible way the equation (A.117) can exist is that these two term equal to a
constant. Is it possible that these terms not equal to a constant? The answer is no
if the assumption of the solution is correct. If it turned that assumption is wrong the
ratio is not constant. Hence, the constant is denoted as λ and with this definition the
PDE is reduced into two ODE. The first equation is X function

1
X(x)

∂X(x)
∂x

= λ (A.118)

The second ODE is for Y

1
Y (y)

∂Y (y)
∂y

= −λ (A.119)

Equations (A.119) and (A.118) are ODE that can be solved with the methods described
before for certain boundary condition.
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A.4 Trigonometry
These trigonometrical identities were set up by Keone Hon with slight modification

1. sin(α + β) = sin α cos β + sin β cosα

2. sin(α− β) = sin α cos β − sin β cosα

3. cos(α + β) = cos α cos β − sin α sin β

4. cos(α− β) = cos α cos β + sin α sin β

5. tan(α + β) =
tanα + tan β

1− tan α tanβ

6. tan(α− β) =
tanα− tanβ

1 + tan α tanβ

1. sin 2α = 2 sin α cos α

2. cos 2α = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x

3. tan 2α =
2 tan α

1− tan2 α

4. sin
α

2
= ±

√
1− cosα

2
(determine whether it is + or - by finding the quadrant

that
α

2
lies in)

5. cos
α

2
= ±

√
1 + cos α

2
(same as above)

6. tan
α

2
=

1− cos α

sin α
=

sinα

1 + cos α

γ

β

b

a

α

c

Fig. -A.7. The tringle angles sides.

for formulas 3-6, consider the triangle with
sides of length a, b, and c, and opposite angles α,
β, and γ, respectively

1. sin2 α =
1− 2 cos(2α)

2

2. cos2 α =
1 + 2 cos(2α)

2

3.
sin α

a
=

sin β

b
=

sin γ

c
(Law of Sines)

4. c2 = a2 + b2 − 2 a b cos γ (Law of Cosines)

5. Area of triangle = 1
2a b sin γ

6. Area of triangle =
√

s(s− a)(s− b)(s− c),

where s =
a + b + c

2
(Heron’s Formula)
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Subjects Index

Symbols
π–theory, 279

A
absolute viscosity, 7, 8, 12
Accelerated system, 92
Acceleration direct derivative, 244
Acceleration, angular, 94
Add Force, 232
Add mass, 190, 232
Add momentum, 190
Aeronautics, 4
Arc shape, 111
Archimedes, 3
Archimedes number, 315
Area direction, 5
Atmospheric pressure, 77
Atwood number, 315
Averaged kinetic energy, 207
Averaged momentum energy, 207
Averaged momentum velocity, 179
Averaged velocity

concentric cylinders, 270
Correction factor, 207
Integral Analysis, 190
Integral analysis, 192

Avi number, 312

B
Basic units, 288
Bernoulli’s equation, 213, 222
Bingham’s model, 11
Body force, 71, 72, 74, 87, 89

effective, 73
Bond number, 315
Boundary Layer, 161
Brinkman number, 315
Buckingham’s theorem, 286
Bulk modulus, 317
bulk modulus, 24, 26
Bulk modulus of mixtures, 31
buoyancy, 3, 115, 117

buoyant force, 87, 125

C
Capillary number, 319
Capillary numbers, 315
Cauchy number, 315
Cavitation number, 315
Co–current flow, 335
Compressibility factor, 81, 91
Concentrating surfaces raise, 37
Conduction, 202
Conservative force, 217
Convection, 202
Convective acceleration, 245
Correction factor, 86
Counter–current

Pulse flow, 352
Counter–current flow, 335, 351

Annular flow, 353
Extended Open channel flow, 353

Courant number, 315
Cut–out shapes, 109
Cylindrical Coordinates, 233

D
D’Alembert paradox, 4
d‘Alembertian Operator, 367
Dean number, 315
Deborah number, 315
Deformable control volume, 148
Density, 6

definition, 6
Density ratio, 86, 129
Differential analysis, 231
dilettante, 11
Dimension matrix, 299
Dimensional analysis, 279

Basic units, 281
Parameters, 283
Typical parameters, 314

Dimensional matrix, 293
Dimensionless
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Naturally, 289
Divergence Theorem, 368
Double choking phenomenon, 337
Drag coefficient, 315
Dynamics similarity, 301

E
Eckert number, 315
Ekman number, 316
Energy conservation, 201
Energy Equation

Linear accelerate System, 217
Rotating Coordinate System, 219
Accelerated System, 217

Energy equation
Frictionless Flow, 216
Simplified equations, 220
Steady State, 215

Euler equations, 231
Euler number, 316, 320
External forces, 176

F
First Law of Thermodynamics, 201
Fixed fluidized bed, 349
Flow first mode, 268
Flow out tank, 204
Flow rate

concentric cylinders, 270
Flow regime map, 332
Flow regimes in one pipe, 336
Fluid Statics

Geological system, 96
Fluids

kinds gas, liquid, 5
Forces

Curved surfaces, 108
Fourier law, 202
Free expansion, 87–89
Froude number, 316

rotating, 321
Fully fluidized bed, 349

G
Galileo number, 316, 321

Gas dynamics, 4
Gas–gas flow, 334
Gauss-Ostrogradsky Theorem, 368
Geometric similarity, 300
Grashof number, 316
Gravity varying

Ideal gas, 89
Real gas, 90

H
Harmonic function, 368
horizontal counter–current flow, 353
Horizontal flow, 335
Hydraulics, 4
Hydraulics system, 33
Hydrodynamics, 4
Hydrostatic pressure, 71, 112

I
Ideal gas, 81
Inclined manometer, 80
Indexical form, 285
Initial condition, 375
Integral analysis

big picture, 166
small picture, 166

Integral equation, 29
Interfacial instability, 232
Inverted manometer, 81
Isotropic viscosity, 252

K
Kinematic, 3
Kinematic boundary condition, 261
Kinematic similarity, 301
kinematic viscosity, 11
Kolmogorov time, 317

L
Laplace Constant, 316
Laplace number, 321
Lapse rate, 89
Leibniz integral rule, 158
Lift coefficient, 316
Limitation of the integral approach, 214
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Linear acceleration, 92
Linear operations, 374
Liquid phase, 83
Liquid–Liquid Regimes, 334
Local acceleration, 245
Lockhart martinelli model, 346

M
Mach number, 316
“Magnification factor”, 80
Marangoni number, 316
Mass velocity, 340
Metacentric point, 127
Micro fluids, 258
Minimum velocity solid–liquid flow, 348
Mixed fluidized bed, 349
Momentum Conservation, 175
Momentum conservation, 245
Momentum equation

Accelerated system, 177
index notation, 250

Morton number, 316
Moving boundary, 261
Moving surface

Free surface, 261
Moving surface, constant of integration,

262
Multi–phase flow, 331
Multiphase flow against the gravity, 338

N
Navier Stokes equations

solution, 4
Navier–Stokes equations, 231, 302
Neutral moment

Zero moment, 125
Neutral stable, 89, 125, 138, 139
Newtonian fluids, 1, 8
No–slip condition, 260
Non–deformable control volume, 148
Non–Linear Equations, 377
Normal stress, 253
Nusselt number, 311
Nusselt’s dimensionless technique, 304

O
Ohnesorge number, 321
Open channel flow, 335
Orthogonal Coordinates, 369
Oscillating manometer, 214
Ozer number, 316

P
Pendulum action, 136
Pendulum problem, 284
Piezometric pressure, 74
Pneumatic conveying, 349
Poiseuille flow, 267

Concentric cylinders, 268
Polynomial function, 113
Prandtl number, 317
Pressure center, 104, 105
pseudoplastic, 11
Pulse flow, 352
purely viscous fluids, 11
Pushka equaiton

expantion, 96
Pushka equation, 27, 91, 98

R
Radiation, 202
Rayleigh–Taylor instability, 137, 335
Real gas, 81
Return path for flow regimes, 337
Reynolds number, 317, 318
Reynolds Transport Theorem, 158

Divergence Theorem, 368
Rocket mechanics, 186
Rossby number, 317

S
Scalar function, 72, 108
Second Law of Thermodynamics, 216
Second viscosity coefficient, 257
Segregated equations, 382
Shear number, 317
Shear stress

initial definition, 7
shear stress, 6
Similitude, 281, 300
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Slip condition range, 260
Solid–fluid flow

Gas dynamics aspects, 350
Solid–fluid flow, 347
Solid–liquid flow, 347
Solid–solid flow, 334
Spherical coordinates, 91
Spherical volume, 123
Stability analysis, 87
stability analysis, 88, 115

cubic, 125
Stability in counter–current flow, 353
Stable condition, 87, 135
Stokes number, 317
stratified flow, 335
Stress tensor, 246

Cartesian coordinates, 246
symmetry, 246, 249
transformation, 246

Strouhal number, 317
substantial derivative, 244
Superficial velocity, 336
Sutherland’s equation, 12

T
Tank emptying parameters, 211
Taylor number, 317
Terminal velocity, 348
Thermal pressure, 258
Thermodynamical pressure, 257
thixotropic, 11
Torricelli’s equation, 213
Total moment, 99
Transformation matrix, 246
Transition to continuous, 175
Triangle shape, 111, 118
Turbomachinary, 193
Two–Phase

Gas superficial velocity, 341
Liquid holdup, 341
Quality of dryness, 341
Reversal flow, 354
Slip velocity, 341
Void Fraction, 341
Wetness fraction, 341

U
Unstable condition, 87
Unsteady State Momentum, 185

V
Vapor pressure, 77
Variables Separation

1st equation, 379
Vectors, 363
Vectors Algebra, 364
Vertical counter–current flow, 352
Vertical flow, 335
Viscosity, 9
von Karman vortex street, 318

W
Watson’s method, 19
Wave Operator, 367
Weber number, 317, 319
Westinghouse patent, 334

Y
Young modulus, 317
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